跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:愛端雅
研究生(外文):Albert, Karunya
論文名稱:全氟化合物(PFCs)去除和分解的生物衍生微複合材料的製備
論文名稱(外文):Fabrication of Bio-Derived Microcomposites for Perfluorinated Compounds (PFCs) Removal and Decomposition
指導教授:許馨云許馨云引用關係
指導教授(外文):Hsu, Hsin-Yun
口試委員:許馨云吳淑褓廖奕翰莊易學侯嘉洪莊佳穎
口試委員(外文):Hsu, Hsin-YunWu, Shu PaoLiao, IanChuang, Yi-HsuehHou, Chia-HungChuang, Chia-Ying
口試日期:2019-12-02
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系分子科學碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:生物修復活的矽藻PFC分解異質芬頓反應活性氧
外文關鍵詞:BioremediationLiving diatomPFCs decompositionHeterogeneous Fenton reactionReactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
持久性全氟化合物(PFC)已被視為全球環境問題。 開發有效清除PFC的方法而不會導致額外的自然界的負擔至關重要。 本研究中,我們將鐵奈米粒子修飾在活矽藻(Dt)的表面上,有效地進行Fenton 反應以及活性氧(ROS)的生成。 活矽藻表面上的鐵奈米粒子可作為一有效的催化劑來催化H2O2 產生 OH• 自由基。活矽藻具有雙重作用:i)作為有效吸附的固相載體,ii)可進行光合作用提供氧氣,在環境壓力條件下,並可產生ROS,從而提高了PFC 的去除效率。 我們還證明了藉由簡單的磁性分離可重複使用的這些活矽藻,並且仍可實現85 %的分解效率。 此新開發的矽藻輔助
生物性修復策略,可實現環境友善的綠色高效PFC 清除與分解,未來並應能應用於其他持久性污染物處理上。
Persistent perfluorinated compounds (PFCs) have been recognized as a global environmental issue. Developing methods without leading to additional burden in nature will be essential for PFCs removal. Herein, we functionalized iron nanoparticles on living diatom (Dt) to efficiently enable the Fenton reaction and reactive oxygen species (ROS) production. Iron nanoparticles at the surface of living diatom act as promising catalytic agents to trigger OH• radical generation from H2O2. Dt plays dual roles: i) as solid support for effective adsorption, and ii) it supplies oxygen and inherently produces ROS under stress conditions, which improves removal efficiency of PFCs. We also demonstrated its reusability by simple magnetic separation and 85% of decomposition efficiency could still be achieved. This newly developed diatom-assisted bioremediation strategy enables green and efficient PFC decomposition and shall be readily applicable to other persistent pollutants.
Abstract...I
摘要 ... II
Acknowledgements ... III
Abbreviations ... IV
Table of Contents ... VIII
List of Figures... XI
List of Tables ... XVI
List of Schemes ... XVI
Chapter 1 Background ... 1
1.1 Exposure to PFCs in Packed Food ...2
1.2 Exposure to PFCs in living organism ...3
1.3 Exposure of PFCs in water source ... 3
Chapter 2 Review Literature ... 5
2.1 Removal of PFCs... 5
2.2 Physical and Chemical Removal ...6
2.3 Biological Treatment Technologies...15
Chapter 3 Research Goal...18
Chapter 4 Materials and methods...20
4.1 Materials ...20
4.2 Characterization of MB – diatomite...20
4.3 Adsorption of PFOA on MB - diatomite surface at different milieu ...20
4.4 Singlet oxygen generation upon irradiation of free MB and MB-Dmt...21
4.5 Synthesis of magnetic Fe NPs ...21
4.6 Preparation and Characterization of Fe-Dt ...21
4.7 Decomposition of PFOA/PFOS by Fe-Dt ...22
4.8 Decomposition by Fe NPs and Fe-diatomite...23
4.9 Identification of PFOA/PFOS degradation fragments by LC-MS...23
4.10 Dissolved CO2 quantification by phenolphthalein indicator... 24
4.11 Evaluation of general ROS and •OH generation by Fe-Dt... 24
4.12 Quantification of H2O2 ... 25
4.13 Reusability of Fe-Dt ... 25
4.14 Viability of Fe Nps modified diatom cells... 25
4.15 Evaluation of cytotoxicity by MTT assay ... 26
Chapter 5 Results and Discussion ... 27
5.1 Adsorption of MB on diatomite surface at different pH milieu... 27
5.2 Adsorption of PFOA on diatomite surface at different milieu... 29
5.3 Adsorption of PFOA on MB-Dmt surface at acidic (pH4), neutral (pH 7) and basic (pH 11) milieu ... 32
5.4 Singlet oxygen generation upon irradiation of free MB and MB-Dmt...33
5.5 Investigation of (Fe-Dt)-mediated PFOA/PFOS decomposition under different conditions ... 34
5.6 Characterization of Fe-Dt ... 36
5.7 Fe-Dt mediated PFOA/PFOS decomposition reaction ... 38
5.8 Identification of PFOA degradation fragments by LC-MS ... 41
5.9 Identification of PFOS degradation fragments by LC-MS ... 46
5.10 Comparative studies of PFOA/PFOS with conventional solid supports – diatomite and Fe Nps ...50
5.11 Investigation of intracellular and extracellular ROS generation Fe-Dt...52
5.12 Detection of OH• generation in (Fe-Dt)-mediated....56
5.13 Analysis of TOC and CO2 in decomposition of PFOA/PFOS...58
5.14 Reusability of Fe-Dt ... 60
5.15 Cytotoxicity analysis of Fe-Dt -treated supernatants ... 63
5.16 Decomposition of PFOA and PFOS at different initial
concentrations...65
Chapter 6 Conclusions ... 69
Supplementary Information ... 70
References....75
APPENDIX...83
Al-Ghouti, M. A., M. A. Khraisheh, M. N. Ahmad, and S. Allen. 2009. Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. Journal of Hazardous Materials 165:589-598.
Al-Ghouti, M. A., M. A. Khraisheh, S. J. Allen, and M. N. Ahmad. 2003. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management 69:229-238.
Bakr.H.E.G.M.M. 2010. Diatomite: Its Characterization, Modifications and Applications. Asian Journal of Materials Science 2:121-136.
Bello, O. S., K. A. Adegoke, and R. O. Oyewole. 2014. Insights into the Adsorption of Heavy Metals from Wastewater using Diatomaceous Earth. Separation Science and Technology 49:1787-1806.
Cao, M. H., B. B. Wang, H. S. Yu, L. L. Wang, S. H. Yuan, and J. Chen. 2010. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials 179:1143-1146.
Chen, J., P. Y. Zhang, and J. Liu. 2007. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences 19:387-390.
Cheremisinoff, N. P. 2016. Perfluorinated Chemicals (PFCs): Contaminants of Concern. Wiley.
Choi, H., S. R. Al-Abed, D. D. Dionysiou, E. Stathatos, and P. Lianos. 2010. Chapter 8 TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse. Pages 229-254 in I. C. Escobar and A. I. Schäfer, editors. Sustainability Science and Engineering. Elsevier.
da Silva-Rackov, C. K. O., W. A. Lawal, P. A. Nfodzo, M. M. G. R. Vianna, C. A. O. do Nascimento, and H. Choi. 2016. Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite. Applied Catalysis B: Environmental 192:253-259.
Desjardins D, S. C., VanHoven RL, Krueger HO. 2001. PFOS: A 96-hr toxicity test with the marine diatom (Skeletonema costatum). Wildlife International, Ltd.
Du, Z. W., S. B. Deng, S. Y. Zhang, B. Wang, J. Huang, Y. J. Wang, G. Yu, and B. S. Xing. 2016. Selective and High Sorption of Perfluorooctanesulfonate and Perfluorooctanoate by Fluorinated Alkyl Chain Modified Montmorillonite. Journal of Physical Chemistry C 120:16782-16790.
ElShafei, G. M. S., F. Z. Yehia, O. I. H. Dimitry, A. M. Badawi, and G. Eshaq. 2015. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification. Chemosphere 139:632-637.
Eschauzier, C., E. Beerendonk, P. Scholte-Veenendaal, and P. De Voogt. 2012. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environmental Science and Technology 46:1708-1715.
Genuis, S. J., L. Curtis, and D. Birkholz. 2013. Gastrointestinal Elimination of Perfluorinated Compounds Using Cholestyramine and Chlorella pyrenoidosa. ISRN Toxicology 2013:657849.
Gomez-Ruiz, B., P. Ribao, N. Diban, M. J. Rivero, I. Ortiz, and A. Urtiaga. 2018. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2 −rGO catalyst. Journal of Hazardous Materials 344:950-957.
Guillard, R. R. L. 1975. Culture of Phytoplankton for Feeding Marine Invertebrates. Pages 29-60 in W. L. Smith and M. H. Chanley, editors. Culture of Marine Invertebrate Animals. Springer US, Boston, MA.
Haag, W. R., and C. C. D. Yao. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science and Technology 26:1005-1013.
Hayashi, R., H. Obo, N. Takeuchi, and K. Yasuoka. 2015. Decomposition of Perfluorinated Compounds in Water by DC Plasma within Oxygen Bubbles. Electrical Engineering in Japan 190:9-16.
Hoigné, J. 1997. Inter-calibration of OH radical sources and water quality parameters. Water Science and Technology 35:1-8.
Hori, H., E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa, and R. Arakawa. 2004. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science and Technology 38:6118-6124.
Hu, C., Q. Luo, and Q. Huang. 2014. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus. Environmental Toxicology and Chemistry 33:1129-1134.
Hu, Y. B., S. L. Lo, Y. F. Li, Y. C. Lee, M. J. Chen, and J. C. Lin. 2018. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Research 140:148-157.
Huang, D. H., L. F. Yin, X. Y. Lu, S. M. Lin, Z. J. Niu, and J. F. Niu. 2017. Directional electron transfer mechanisms with graphene quantum dots as the electron donor for photodecomposition of perfluorooctane sulfonate. Chemical Engineering Journal 323:406-414.
Huang, D. H., L. F. Yin, and J. F. Niu. 2016. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environmental Science & Technology 50:5857-5863.
Huang, L.-Z., M. Zhu, Z. Liu, Z. Wang, and H. C. B. Hansen. 2019. Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials 364:39-47.
Huling S, P. B. 2006. Engineering Issue: in Situ Chemical Oxidation, , U.S. .
Huang, S., and P. R. Jaffe. 2019. Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) byAcidimicrobiumsp. Strain A6. Environmental Science and Technology 53: 11410-11419.
Jogsten, I. E., G. Perello, X. Llebaria, E. Bigas, R. Marti-Cid, A. Karrman, and J. L. Domingo. 2009. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food. Food and Chemical Toxicology 47:1577-1583.
Jung, Y. S., W. T. Lim, J. Y. Park, and Y. H. Kim. 2009. Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology 30:183-190.
Jurado, E., M. Fernández-Serrano, J. Núñez-Olea, G. Luzón, and M. Lechuga. 2006. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 65:278-285.
Kabiri, S., D. N. Tran, S. Azari, and D. Losic. 2015. Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water. ACS Applied Materials and Interfaces 7:11815-11823.
Key, B. D., R. D. Howell, and C. S. Criddle. 1998. Defluorination of Organofluorine Sulfur Compounds byPseudomonasSp. Strain D2. Environmental Science and Technology 32:2283-2287.
Kim, D., T. Okamoto, T. Oda, K. Tachibana, K. S. Lee, A. Ishimatsu, Y. Matsuyama, T. Honjo, and T. Muramatsu. 2001. Possible involvement of the glycocalyx in the ichthyotoxicity of Chattonella marina (Raphidophyceae): immunological approach using antiserum against cell surface structures of the flagellate. Marine Biology 139:625-632.
Kim, S., M. Fujitsuka, and T. Majima. 2013. Photochemistry of Singlet Oxygen Sensor Green. The Journal of Physical Chemistry B 117:13985-13992.
Kim, T. H., S. H. Lee, H. Y. Kim, K. Doudrick, S. Yu, and S. D. Kim. 2019. Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants. Chemical Engineering Journal 361:1363-1370.
Koga, M., Y. Yamamichi, Y. Nomoto, M. Irie, T. Tanimura, and T. Yoshinaga. 1999. Rapid determination of anionic surfactants by improved spectrophotometric method using methylene blue. Analytical Sciences 15:563-568.
Kunacheva, C., S. Fujii, S. Tanaka, S. T. M. L. D. Seneviratne, P. H. L. Nguyen, M. Nozoe, K. Kimura, B. R. Shivakoti, and H. Harada. 2012. Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years. Water Science and Technology 66:2764-2771.
Lechner, M., and H. Knapp. 2011. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). Journal of Agricultural and Food Chemistry 59:11011-11018.
Liang, S., Pierce, D, Lin, H, Chiang, D, Huang, Q. . 2018. Electrochemical oxidation of PFOA and PFOS in concentrated waste streams. Remediation Journal 28:127-134.
Lin, H., J. F. Niu, S. Y. Ding, and L. L. Zhang. 2012. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Research 46:2281-2289.
Liou, J. S., B. Szostek, C. M. DeRito, and E. L. Madsen. 2010. Investigating the biodegradability of perfluorooctanoic acid. Chemosphere 80:176-183.
Liu, C. S., K. Shih, and F. Wang. 2012. Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. Separation and Purification Technology 87:95-100.
Liu, D., Z. Xiu, F. Liu, G. Wu, D. Adamson, C. Newell, P. Vikesland, A. L. Tsai, and P. J. Alvarez. 2013. Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. Journal of Hazardous Materials 262:456-463.
Liu, G. S., H. Zhou, J. Teng, and S. J. You. 2019. Electrochemical degradation of perfluorooctanoic acid by macro- porous titanium suboxide anode in the presence of sulfate. Chemical Engineering Journal 371:7-14.
Liu, Y., S. Chen, X. Quan, H. Yu, H. Zhao, and Y. Zhang. 2015a. Efficient Mineralization of Perfluorooctanoate by Electro-Fenton with H2O2 Electro-generated on Hierarchically Porous Carbon. Environmental Science and Technology 49:13528-13533.
Liu, Y., S. Chen, X. Quan, H. Yu, H. Zhao, and Y. Zhang. 2015b. Efficient Mineralization of Perfluorooctanoate by Electro-Fenton with H2O2 Electro-generated on Hierarchically Porous Carbon. Environmental Science and Technology 49:13528-13533.
Luo, Q., J. H. Lu, H. Zhang, Z. Y. Wang, M. B. Feng, S. Y. D. Chiang, D. Woodward, and Q. G. Huang. 2015. Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. Environmental Science and Technology Letters 2:198-203.
Lutze, H. V., J. Brekenfeld, S. Naumov, C. von Sonntag, and T. C. Schmidt. 2018. Degradation of perfluorinated compounds by sulfate radicals - New mechanistic aspects and economical considerations. Water Research 129:509-519.
Lyngsie, G., L. Krumina, A. Tunlid, and P. Persson. 2018. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Scientific Reports 8:10834.
Lyu, X.-J., W.-W. Li, P. K. S. Lam, and H.-Q. Yu. 2015. Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Scientific Reports 5:9353.
Ma, Q., L. Liu, W. Cui, R. Li, T. Song, and Z. Cui. 2015. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Yb-doped Ti/SnO2–Sb/PbO2 anodes and determination of the optimal conditions. RSC Advances 5:84856-84864.
Marshall, J.-A., M. Hovenden, T. Oda, and G. M. Hallegraeff. 2002a. Photosynthesis does influence superoxide production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). Journal of Plankton Research 24:1231-1236.
Marshall, J. A., M. Hovenden, T. Oda, and G. M. Hallegraeff. 2002b. Photosynthesis does influence superoxide production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). Journal of Plankton Research 24:1231-1236.
Meesters, R. J., and H. F. Schroder. 2004. Perfluorooctane sulfonate--a quite mobile anionic anthropogenic surfactant, ubiquitously found in the environment. Water Science and Technology 50:235-242.
Mhadhbi, L., D. Rial, S. Perez, and R. Beiras. 2012. Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima. Journal of Environmental Monitoring : JEM 14:1375-1382.
Milne, A., M. S. Davey, P. J. Worsfold, E. P. Achterberg, and A. R. Taylor. 2009a. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection-chemiluminescence. Limnology and Oceanography-Methods 7:706-715.
Milne, A., M. S. Davey, P. J. Worsfold, E. P. Achterberg, and A. R. Taylor. 2009b. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection—chemiluminescence. Limnology and Oceanography: Methods 7:706-715.
Mitchell, S. M., M. Ahmad, A. L. Teel, and R. J. Watts. 2014. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environmental Science and Technology Letters 1:117-121.
Ochoa-Herrera, V., J. A. Field, A. Luna-Velasco, and R. Sierra-Alvarez. 2016. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science-Processes and Impacts 18:1236-1246.
Ochoa-Herrera, V., and R. Sierra-Alvarez. 2008. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72:1588-1593.
Park, S. Y., E. S. Choi, J. Hwang, D. Kim, T. K. Ryu, and T.-K. Lee. 2009. Physiological and biochemical responses of Prorocentrum minimum to high light stress. Ocean Science Journal 44:199-204.
Park, S. Y., E. S. Choi, J. Hwang, D. Kim, T. K. Ryu, and T.-K. Lee. 2010. Physiological and biochemical responses of Prorocentrum minimum to high light stress. Ocean Science Journal 44:199-204.
Qian, Y. J., X. Guo, Y. L. Zhang, Y. Peng, P. Z. Sun, C. H. Huang, J. F. Niu, X. F. Zhou, and J. C. Crittenden. 2016. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science and Technology 50:772-781.
Reis Batista, I., A. B. Garcia, P. van Dalen, P. Kamermans, M. Verdegem, and A. C. Smaal. 2015. CulturingChaetoceros muelleriusing simplified media with different N sources: effects on production and lipid content. European Journal of Phycology 50:92-99.
Ribeiro, A. R., O. C. Nunes, M. F. R. Pereira, and A. M. T. Silva. 2015. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment international 75:33-51.
Rossetti, G. H., E. D. Albizzati, and O. M. Alfano. 2002. Decomposition of Formic Acid in a Water Solution Employing the Photo-Fenton Reaction. Industrial and Engineering Chemistry Research 41:1436-1444.
Sahu, S. P., M. Qanbarzadeh, M. Ateia, H. Torkzadeh, A. S. Maroli, and E. L. Cates. 2018. Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)(2) Microparticle Ultraviolet Photocatalyst. Environmental Science and Technology Letters 5:533-538.
Schaefer, C. E., C. Andaya, A. Urtiaga, E. R. McKenzie, and C. P. Higgins. 2015. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). Journal of Hazardous Materials 295:170-175.
Shao, T., P. Zhang, L. Jin, and Z. Li. 2013. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Applied Catalysis B: Environmental 142-143:654-661.
Stahl, T., R. Ackmann, S. Georgii, R. Wohlfarth, and H. Brunn. 2007. Perfluorierte Tenside. Ernährung - Wissenschaft und Praxis 1:27-35.
Stahl, T., J. Heyn, H. Thiele, J. Huther, K. Failing, S. Georgii, and H. Brunn. 2009. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives of Environmental Contamination and Toxicology 57:289-298.
Stahl, T., D. Mattern, and H. Brunn. 2011. Toxicology of perfluorinated compounds. Environmental Sciences Europe 23:38.
Suja, F., B. K. Pramanik, and S. M. Zain. 2009. Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Science and Technology 60:1533-1544.
Taraldsvik, M., and S. M. Myklestad. 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. European Journal of Phycology 35:189-194.
Tian, H., J. Gao, H. Li, S. A. Boyd, and C. Gu. 2016. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite. Scientific Reports 6:32949.
Vedagiri, U. K., R. H. Anderson, H. M. Loso, and C. M. Schwach. 2018. Ambient levels of PFOS and PFOA in multiple environmental media. Remediation Journal 28:9-51.
Wang, F., X. W. Lu, X. Y. Li, and K. M. Shih. 2015. Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment. Environmental Science and Technology 49:5672-5680.
Wang, N., H. Lv, Y. Zhou, L. Zhu, Y. Hu, T. Majima, and H. Tang. 2019a. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate. Environmental Science and Technology.
Wang, P., Y. Lu, T. Wang, Y. Fu, Z. Zhu, S. Liu, S. Xie, Y. Xiao, and J. P. Giesy. 2014. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities. Environmental Pollution 190:115-122.
Wang, Q., M. Liu, H. Zhao, Y. Chen, F. Xiao, W. Chu, and G. Zhao. 2019b. Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation. Chemical Engineering Journal 378:122071.
Wang, S., J. Huang, Y. Yang, Y. Hui, Y. Ge, T. Larssen, G. Yu, S. Deng, B. Wang, and C. Harman. 2013. First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment. Environmental Science and Technology 47:10163-10170.
Xia, P., X. J. Wang, X. Wang, J. Zhang, H. Wang, J. K. Song, R. R. Ma, J. Y. Wang, and J. F. Zhao. 2017. Synthesis and Characterization of MgO Modified Diatomite for Phosphorus Recovery in Eutrophic Water. Journal of Chemical and Engineering Data 62:226-235.
Yang, B., C. J. Jiang, G. Yu, Q. F. Zhuo, S. B. Deng, J. H. Wu, and H. Zhang. 2015. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. Journal of Hazardous Materials 299:417-424.
Yang, S., J. Cheng, J. Sun, Y. Hu, and X. Liang. 2013. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS One 8:e74877.
Yi, L., Q. Peng, D. Liu, L. Zhou, C. Tang, Y. Zhou, and L. Chai. 2018. Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1. Environmental Technology:1-9.
Yin, P., Z. Hu, X. Song, J. Liu, and N. Lin. 2016. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions. International Journal of Environmental Research and Public Health 13:602.
Zhang, K., J. Huang, G. Yu, Q. Zhang, S. Deng, and B. Wang. 2013. Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling. Environmental Science and Technology 47:6471-6477.
Zhang, Z., J. J. Chen, X. J. Lyu, H. Yin, and G. P. Sheng. 2014. Complete mineralization of perfluorooctanoic acid (PFOA) by gamma-irradiation in aqueous solution. Scientific Reports 4:7418.
Zhuo, Q. F., Q. Xiang, H. Yi, Z. K. Zhang, B. Yang, K. Cui, X. Y. Bing, Z. C. Xu, X. L. Liang, Q. W. Guo, and R. Yang. 2017. Electrochemical oxidation of PFOA in aqueous solution using highly hydrophobic modified PbO2 electrodes. Journal of Electroanalytical Chemistry 801:235-243.
電子全文 電子全文(網際網路公開日期:20230109)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top