跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡旭彤
研究生(外文):Chien, Hsu-Tung
論文名稱:⾏動邊際運算:多營運商無線電接入網路分享、多租戶切片以及服務鏈路由
論文名稱(外文):Mobile Edge Computing: Multi-operator RAN Sharing, Multi-tenant Slicing, and Service Function Chain Routing
指導教授:林盈達林盈達引用關係
指導教授(外文):Lin, Ying-Dar
口試委員:賴源正嚴力行李奇育佘崑元楊人順賴家齡
口試委員(外文):Lai, Yuan-ChengYen, Li-HsingLi, Chi-YuSeah, Khoon-GuanYang, Jen-ShunLai, Chia-Lin
口試日期:2019-09-06
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:121
中文關鍵詞:LTE5G網絡切片RAN共享移動邊緣運算服務功能鏈路由容量分配計算資源通信資源
外文關鍵詞:LTE5Gnetwork slicingRAN sharingmobile edge computingservice function chainroutingcapacity allocationcomputing resourcecommunication resource
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:3
為了滿足5G網絡中三種服務類型的需求,移動邊緣運算 (MEC) 解決辦法被提出。此外,為了實現靈活且環境獨立的各種服務部署,將基於虛擬化技術的網絡切片引入5G系統。多租戶端到端切片包括Radio Access Network (RAN) 和Core Network的2層結構,在此架構中有computing和communication兩種資源。每個切片都可以視為一個完整的MEC系統,此系統支援Service Function Chain (SFC)的部署。為了完成此複雜系統的開發,我們需要幾個關鍵模組,包括RAN共享,切片管理結合請求轉換和容量分配,服務鏈路由和MEC管理器。在論文中,我們提出了一種透明的RAN共享方法,即RAN代理,具有公平協議,是一個利用Soft partition 與 blocking和Dropping (SBD)概念的方法。 SBD實現了0.997的運營商間公平性。此外,當共享BS未充分利用時,SBD將blocking rate從硬分區方案下的35%降低到幾乎0%,而控制dropping rate在5%以下。但在啟動scale down 功能後,可以將dropping rate降低到幾乎0%。關於切片管理,提出了聯合邊緣和中央資源切片器 (JECRS)並且使用開源工具將其實現。實驗結果表明,該框架成功地隔離了切片之間的5G資源。此外,基於此框架,提出了一種2層資源分配算法 ,稱之在延遲限制下上層優先過度供應預防演算法(UFLOP),此演算法以最小化“過度供應”比率的方式調整運算資源和網路資元分配在滿足租戶的延遲限制下。 實驗數據說明了UFLOP成功且正確的分配上層和邊緣之間的資源比率,實現了接近零的過度配置比率,同時仍滿足延遲要求。結果表明,增強型移動寬帶(eMBB),超可靠低延遲(URLLC)和大規模機器類型連接(mMTC)應用的最佳資源分配比分別為10:0, 1.5:8.5和7.8:2.2。至於路由,多站點最短端到端延遲第一採用參考鏈路和節點狀態路由(MM-LNSR)是一種用於有線/無線網絡中SFC的路由計算算法。透過修改的Dijkstra和旅行商問題算法,讓這樣種演算法能不只考慮鏈路的情況同時也考慮運算節點狀態並試圖找出滿足服務的端到端延遲約束的路由。實驗表明,在2-stop情況下,通過另外考慮用於計算VNF的延遲的節點狀態的路由度量,未滿足路徑的百分比顯著改善,減少75%(從80%減少到5%)。並且可用路徑的錯誤率降低了94%(94%至0%),96%(99%至3%)和93%(100%至7%)分別是在一站式,兩站式和三站式的情況下考慮鏈路可靠性和VNF的路由度量時。最後, 提出的MEC平台部署解決方案於4G LTE網絡中採用了中間盒方法。它符合標準且對現有移動網絡組件可以兼容,並通過託管應用服務器而為移動用戶提供MEC服務。我們通過基於開源OpenAirInterface移動網路平台的實作證實了它的可行性。綜上所述,本文提出了許多滿足5G網絡服務類型需求的解決方案。
To meet the needs of three service types in 5G networks, mobile edge computing (MEC) has emerged. Furthermore, to achieve flexible and isolated deployment of diverse services, network slicing into virtualized platforms has been brought into the 5G systems. An end-to-end slice consists of both computing and communication resources deployed across the 2-tier structure of access and core networks. Each slice can be viewed as a complete 5G MEC system supporting service orchestration and chaining. To complete the development of the platform, we need several advanced components, including RAN sharing, slicing management with request translation and capacity allocation, service chain routing, and MEC manager. In this dissertation, we proposed a transparent RAN sharing method which is RAN Proxy with a fairness protocol a Soft-partition with Blocking and Dropping (SBD). SBD achieves an inter-operator fairness of 0.997. Furthermore, SBD reduces the blocking rate from 35% under a hard partition scheme to almost 0% when the shared base station is under-utilized, whereas controlling the dropping rate at 5%. Notably, the dropping rate can be reduced to almost 0% using a newly proposed bandwidth scale down procedure. About the slicing management, the proposed Joint Edge and Central Resource Slicer (JECRS) framework is implemented using open source tools. The experimental results show that the framework successfully isolates the 5G resources between slices. Moreover, relied on the framework, Upper-tier First with Latency-bounded Over-provisioning Prevention (UFLOP), a 2-tier resource allocation algorithm, is proposed to adjust the capacity and traffic allocation in such a way to minimize "over-provisioning ratio" while still satisfying the latency constraints of the tenants. UFLOP successfully determines the traffic allocation ratio between the central office and the edge, which achieves an over-provisioning ratio close to zero while still meeting the latency requirements. The results suggest optimal resource allocation ratios of 10:0, 1.5:8.5 and 7.8:2.2 for the Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency (URLLC), and massive Machine Type Connection (mMTC) applications, respectively. For routing, we proposed a Multi-stop Multi-path Link and Node State Routing (MM-LNSR), a route calculation algorithm for the SFC in wired/wireless networks with modified Dijkstra's and Traveling Salesman Problem algorithms, considering the proposed link in addition node states and trying satisfy the end-to-end latency constraints of services. The experiments show a significant improvement of the percentage of unsatisfied paths, reduced 75% (from 80% to 5 %) by additionally considering the proposed routing metric of the node state for computing delay of VNFs in 2-stop case, and the failure rates of available paths are reduced 94% (94% to 0%), 96% (99% to 3%), and 93% (100% to 7%) of 1-stop, 2-stop, and 3-stop cases, respectively, by considering both proposed routing metrics for reliability of link and VNF. Finally, the proposed MEC platform deployment solution in 4G LTE networks is using a middlebox approach. It is standard-compliant and transparent to existing cellular network components, and enables the MEC service for mobile users by hosting application servers. We have confirmed its viability through a prototype based on the open-source OpenAirInterface cellular platform. To sum up, the dissertation proposes solutions to meet the needs of service types in 5G networks.
摘 要 i
Abstract iii
Acknowledgments v
Abbreviations vi
Table of Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Issues 2
1.3 Research Roadmap 4
1.4 Contributions 8
1.5 Dissertation Organization 9
Chapter 2 Background 10
2.1 Mobile Network Systems 10
2.1.1 LTE Architecture 10
2.1.2 Multi-operator/Multi-tenant Resource Sharing 11
2.1.3 Mobile Edge Computing (MEC) 11
2.1.4 Slicing in 5G Environments 12
2.2 Management and Organization (MANO) and Open Sources 14
Chapter 3 Multi-Operator in Transparent RAN Sharing 15
3.1 Introduction 15
3.2 Related Work 16
3.2.1 Intra-Operator Control: LTE QoS 16
3.2.2 Inter-Operator Control: Related Works 17
3.3 Problem Description 19
3.4 RAN proxy with Proposed Blocking and Dropping Coordinator 21
3.4.1 Overview 21
3.4.2 UE Admission Control 22
3.4.3 Bandwidth Grant Control 24
3.5 Numerical Results 27
3.5.1 Experimental Setup 27
3.5.2 Fairness Among Multiple Operators 28
3.5.3 Utilization of Shared Base Station 29
3.5.4 Blocking Rate and Dropping Rate 31
3.5.5 SBD With Bandwidth Scale-Down Procedure 33
3.6 Summary 35
Chapter 4 E2E Slicing with Computing and Communication Resource Allocation 37
4.1 Introduction 37
4.2 Related Work 39
4.3 Problem Description 41
4.3.1 Architecture 41
4.3.2 Optimized 2-tier Resource 42
4.4 Proposed Slicer and 2-tier Infrastructure 48
4.4.1 Joint Edge and Central Resource Slicer (JECRS) 48
4.4.2 Design and Implementation of 2-tier Infrastructure 49
4.4.3 Upper-tier First with Latency-bounded Over-provisioning Prevention (UFLOP) 52
4.5 Numerical Results 62
4.5.1 Testbed description 62
4.5.2 Results 63
4.6 Summary 71
Chapter 5 Service Chain Routing with Communication and Computation States and Latency Constraints 73
5.1 Introduction 73
5.2 Related Work 75
5.3 System Model and Problem Statement 76
5.3.1 System Model 76
5.3.2 Problem Description 78
5.4 Multi-stop Multi-path Link and Node State Routing (MM-LNSR) 79
5.4.1 Routing Metrics 80
5.4.2 Routing Calculation 82
5.5 Evaluations and Results 83
5.5.1 Simulation Description 84
5.5.2 Routing Metric: 1D (Link State) vs. 2D (Link and Node States) 85
5.5.3 Routing Metric: Reliability of Links and Nodes 87
5.5.4 Influence of E2E Latency Requirements of 5G Use Cases 89
5.5.5 Impact of applying multi-path 91
5.6 Summary 92
Chapter 6 Mobile Edge Computing Platform 95
6.1 Introduction 95
6.2 Related Work 96
6.3 Problems and Design Ideas 97
6.3.1 MEC Deployment as a Middlebox 97
6.3.2 Design Ideas 97
6.4 MEC Platform Architecture 99
6.5 Implementation and Evaluation 101
6.5.1 Implementation 101
6.5.2 Impact of MEC Performance 102
6.6 Summary 104
6.6.1 Discussion 104
6.6.2 Conclusion 105
Chapter 7 Conclusions 106
Bibliography 110
[1] ETSI, “ABOUT ETSI”, [Online]. Available: https://www.etsi.org/about. [Accessed: Aug. 2019].
[2] 3GPP, “Study on enhancement of Ultra-Reliable Low-Latency Communication (URLLC) support in the 5G Core network (5GC),” 3GPP specification, 3GPP TR 23.725 V0.3.0, Jul. 2018.
[3] 3GPP, “The path to 5G: as much evolution as revolution”, [Online]. Available: https://www.3gpp.org/news-events/partners-news/1969-mec. [Accessed: Aug. 2019].
[4] 3GPP, “5G-NR workplan for eMBB”, [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1836-5g_nr_workplan. [Accessed: Aug. 2019].
[5] ETSI, “Mobile Edge Computing (MEC) Terminology,” ETSI GS MEC 001 V1.1.1, March 2016.
[6] 3GPP, “About 3GPP”, [Online]. Available: https://www.3gpp.org/about-3gpp. [Accessed: May 2019].
[7] 3GPP, “Radio Access Network”, [Online]. Available: http://www.3gpp.org/specifications-groups/ran-plenary. [Accessed: Aug. 2019].
[8] A. Morton, “Considerations for Benchmarking Virtual Network Functions and Their Infrastructure,” RFC 8172, Jul., 2017.
[9] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration,” ETSI specification, ETSI GS NFV-MAN 001 V1.1.1, Dec. 2014.
[10] Nokia Solutions and Networks, “Network Sharing: Delivering Mobile Broadband more Efficiently and at Lower Cost,” Nokia Network Sharing White Paper, 2014.
[11] J. Halpern and C. Pignataro, "Service Function Chaining (SFC) Architecture," IETF RFC 7665, Oct. 2015.
[12] S. Wong, N. Sastry, O. Holland, V. Friderikos, M. Dohler, and H. Agh- vami, “Virtualized Authentication, Authorization and Accounting (V-AAA) in 5G Networks,” in Proceeding IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki, Finland, Sep. 2017.
[13] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration,” ETSI GS NFV-MAN 001 V1.1.1, Dec. 2014.
[14] ETSI, “5G”, [Online]. Available: https://www.etsi.org/technologies-clusters/technologies/5g. [Accessed: Aug. 2019].
[15] 3GPP, “Policy and Charging Control Architecture,” 3GPP Specification, TS 23.203 V10.10.0, Dec. 2014.
[16] ETSI, “4G”, [Online]. Available: https://www.etsi.org/technologies/mobile/4g. [Accessed: Aug. 2019].
[17] Cisco, “Proxy ARP,” [Online]. Available: https://cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html. [Accessed: Aug. 2019].
[18] 3GPP, “General Packet Radio Service (GPRS); GPRS Tunneling Protocol (GTP) Across the Gn and Gp Interface,” 3GPP Standard TS29.060 V14.1.0, 2016.
[19] OpenID Connect, “A Simple Identity Layer on top of the OAuth 2.0 Protocol,” [Online]. Available: https://openid.net/connect. [Accessed: Aug. 2019].
[20] 3GPP, “Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol,” 3GPP Specification, TS 29.272 V10.10.0, Mar . 2018.
[21] 3GPP, “Home Subscriber Server (HSS) diameter interfaces for interworking with packet data networks and applications,” TS 29.336 V13.10.0, Dec . 2017.
[22] Cisco, “Serving Gateway Overview,” [Online]. Available: https://cisco.com/c/en/us/td/docs/wireless/asr_5000/20/SGW/b_20-SGW-Bookmap/b_20-SGW-Bookmap_chapter_01.pdf. [Accessed: Aug. 2019].
[23] 3GPP, “Domain Name System Procedures Stage 3,” TS 29.303 V12.4.0, Sep. 2014.
[24] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios,” TR 36.942 V14.0.0, Mar. 2017.
[25] 3GPP, “Network Arhcitecture,” 3GPP Standard TS23.002 V14.1.0, 2017.
[26] 3GPP, ”LTE;EvolvedUniversalTerrestrialRadioAccess Network (E-UTRAN); S1 Application Protocol (S1AP),” TS 36.413, Jan. 2018.
[27] 3GPP, “General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U),” TS29.281, Dec. 2017.
[28] NGMN Alliance, “Description of Network Slicing Concept,” NGMN 5G Project Requirements & Architecture – Work Stream E2E Architecture, Version 1.0, 13th, Jan. 2016.
[29] Openstack, “Openstack”, [Online]. Available: https://www.openstack.org/. [Accessed: Aug. 2019].
[30] T. Frisanco, P. Tafertshofer, P. Lurin, and R. Ang, “Infrastructure sharing and shared operations for mobile network operators From a deployment and operations view,” in Proc. IEEE Network Operations Management Symp., Apr. 7–11, 2008, pp. 129–136.
[31] GSMA Head Office, “Mobile Infrastructure Sharing,” Accedian RAN Sharing White Paper, Sep. 2012.
[32] Nokia Solutions and Networks, “Network Sharing: Delivering Mobile Broadband more Efficiently and at Lower Cost,” Nokia Network Sharing White Paper, 2014.
[33] Accedian Network, “RAN Sharing Solutions: Network Performance Monitoring,” Accedian RAN Sharing White Paper, Q2 2015.
[34] J. Markendahl and A. Ghanbari, "Shared Small Cell Networks Multi-operator or Third Party Solutions or Both?," in Proc. Modeling & Optimization in Mobile, Ad Hoc & Wireless Networks (WiOpt), May 13-17, 2013, pp. 41-48.
[35] 3GPP, “Radio Resource Control,” 3GPP TS 36.331 V10.7.0, Nov. 2012.
[36] L. Frenzel, “Understanding The Small-Cell And HetNet Movement,” ELECTRONIC DESIGN, Sep. 2013.
[37] X. Ge, S. Tu, G. Mao et al., “5G Ultra-Dense Cellular Networks,” IEEE Wireless Communications, Volume: 23, Issue: 1, Feb. 2016.
[38] 3GPP, “Quality of Service (QoS) Concept and Architecture,” 3GPP Specification, TS 23.107 V10.1.0, June 2011.
[39] 3GPP, “Policy and Charging Control Architecture,” 3GPP Specification, TS 23.203 V10.10.0, Dec. 2014.
[40] H. Ekström, "QoS Control in the 3GPP Evolved Packet System," IEEE Communications Magazine, vol. 47, pp. 76-83, Feb. 2009.
[41] 3GPP, “General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access,” 3GPP Specification, TS 23.401 V10.13.0, Dec. 2014.
[42] 3GPP, “Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C),” TS 29.274 V12.6.0, Oct. 2014.
[43] 3GPP, “General Packet Radio Service (GPRS); Service Description,” 3GPP Specification, TS 23.060 V10.3.0, Mar. 2011.
[44] K. Johansson, M. Kristensson and U. Schwarz, “Radio Resource Management in Roaming Based Multi-operator WCDMA Networks,” in Proc. IEEE 59th Vehicular Technology Conference, May 17-19, 2004, pp. 2062-2066.
[45] A. Gogic and G. B. Horn, “Asymmetric Radio Access Network (RAN) Resource Allocation in RAN Sharing Arrangement,” U.S. patent, 20140029529, Jan. 2014.
[46] T. Guo and R. Arnott, “Active LTE RAN Sharing with Partial Resource Reservation,” in Proc. IEEE 78th Vehicular Technology Conference (VTC Fall), Sept. 2-5, 2013, pp. 1-5.
[47] 3GPP, “Carrier Aggregation explained”, [Online]. Available: https:// 3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained. [Accessed: Aug. 2019].
[48] Frank A. Haight, “Handbook of the Poisson Distribution,” New York: John Wiley & Sons, 1967.
[49] X. Costa-Perez, J. Swetina, and T. Guo, “Radio Access Network Virtualization for Future Mobile Carrier Networks,” IEEE Communications Magazine, vol. 51, pp. 27-35, July 2013.
[50] A. Checko, H. L. Christiansen, Y. Yan et al., "Cloud RAN for Mobile Networks - A Technology Overview," IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 405-426, 1st quarter 2015.
[51] M. Peng et al., “Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues,” IEEE Commun. Surveys & Tutorials, vol. 18, no. 3, pp. 2282–308, 3rd quarter 2016.
[52] X. Xu, H. Zhang, and et al., "SDN based next generation Mobile Network with Service Slicing and trials," China Communications, Vol. 11, Issue: 2, pp. 65-77, Feb. 2014.
[53] A. Rostami, P. Öhlén, M. A. S. Santos and A. Vidal, "Multi-Domain Orchestration across RAN and Transport for 5G," in Proc. the 2016 ACM SIGCOMM Conference, August 22-26, 2016, pp. 613-614.
[54] M. Vincenzi, A. Antonopoulos and et al., "Multi-Tenant Slicing for Spectrum Management on the Road to 5G," IEEE Wireless Communications, Vol. 24, Issue: 5, pp. 118-125, Oct. 2017.
[55] P. Rost, C. Mannweiler and et al., "Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks," IEEE Communications Magazine, Vol. 55, Issue: 5, pp. 72-79, May 2017.
[56] K. Katsalis, N. Nikaein and et al., "Network Slices toward 5G Communications: Slicing the LTE Network,” IEEE Communications Magazine, Vol. 55, Issue: 8, pp.146-154, Aug. 2017.
[57] X. Li, M. Samaka and et al., "Network Slicing for 5G: Challenges and Opportunities," IEEE Internet Computing, Vol. 21, Issue: 5, pp. 20-27, Sep. 2017.
[58] H. Zhang, N. Liu and et al., "Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges," IEEE Communications Magazine, Apr. 2017.
[59] Q. Li, G. Wu, A. Papathanassiou and U. Mukherjee, "An end-to-end network slicing framework for 5G wireless communication systems," Cornell University Library, Aug. 2016.
[60] A. Ibrahim, K. Adlen and et al., "Towards 5G network slicing over multiple domains," IEICE Transactions on Communications, Special section on Network Virtualization, Network Softwarisation, and Fusion Platform of Computing and Networking. Vol 100B, N°11, Nov. 2017.
[61] N. Nikaein, E. Schiller and et al., "Network Store: Exploring Slicing in Future 5G Networks," in Proc. the 10th International Workshop on Mobility, Paris, France, Sep. 07-07, 2015, pp. 8-13.
[62] A. Mayoral, R. Vilalta and et al., "Multi-tenant 5G Network Slicing Architecture with Dynamic Deployment of Virtualized Tenant Management and Orchestration (MANO) Instances," in Proc. ECOC 2016; 42nd European Conference on Optical Communication, Sep. 18-22, 2016.
[63] Openstack, “Tacker”, [Online]. Available: https://wiki.openstack.org/wiki/Tacker. [Accessed: Aug. 2019].
[64] Openstack, “OpenStack Compute (nova)”, [Online]. Available: https://docs.openstack.org/nova/latest/. [Accessed: Aug. 2019].
[65] OpenDaylight, “OpenDaylight”, [Online]. Available: https://www.opendaylight.org/. [Accessed: Aug. 2019].
[66] Openstack, “Neutron”, [Online]. Available: https://wiki.openstack.org/wiki/Neutron. [Accessed: Aug. 2019].
[67] OASIS, “Neutron”, [Online]. Available: https:// oasis-open.org/committees/tc_home.php?wg_abbrev=tosca. [Accessed: Aug. 2019].
[68] Perf, “Linux kernel profiling with perf”, [Online]. Available: https://perf.wiki.kernel.org/index.php/Tutorial. [Accessed: Aug. 2019].
[69] iftop, “iftop: display bandwidth usage on an interface”, [Online]. Available: http://www.ex-parrot.com/~pdw/iftop/. [Accessed: Aug. 2019].
[70] VLC, “A free and open source cross-platform multimedia player and framework that plays most multimedia files and various streaming protocols”, [Online]. Available: https://www.videolan.org. [Accessed: Aug. 2019].
[71] pyvit, “pyvit: Python Vehicle Interface Toolkit”, [Online]. Available: https://github.com/linklayer/pyvit. [Accessed: Aug. 2019].
[72] Eclipse, “Eclipse Mosquitto™ An open source MQTT broker”, [Online]. Available: https://mosquitto.org. [Accessed: Aug. 2019].
[73] NextEPC, “Build your own LTE network easy”, [Online]. Available: https://nextepc.org. [Accessed: Mar. 2019].
[74] C.Y. Li, H.Y. Liu, P.H. Huang, and et al., “Mobile Edge Computing Platform Deployment in 4G {LTE} Networks: A Middlebox Approach,” in Proc. USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston, MA, USA, July 2018.
[75] S. S. Krishnan and R. K. Sitaraman, "Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs," IEEE/ACM Transactions on Networking, vol. 21, no. 6, pp. 2001-2014, Dec. 2013.
[76] M. Boban, A. Kousaridas and et al., “Use Cases, Requirements, and Design Considerations for 5G V2X”, IEEE Vehicular Technology Magazine, Dec. 2017.
[77] P. Schulz, M. Matthe and et al., "Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture," IEEE Communications Magazine, vol. 55, no. 2, pp. 70-78, Feb. 2017.
[78] 3GPP, “NR; User Equipment (UE) radio transmission and reception,” 3GPP specification, 3GPP TS 38.101, Jun. 2017.
[79] iPerf, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP”, [Online]. Available: https://iperf.fr. [Accessed: Aug. 2019].
[80] OpenFog Consortium, “OpenFog Reference Architecture for Fog Computing”, OPFRA001.020817, Feb. 2017.
[81] C. Hedrick, "Routing Information Protocol," IETF RFC 1058, Jun. 1988.
[82] J. Moy, “OSPF Version 2,” IETF RFC 2178, Jul. 1997.
[83] S. Corson and J. Macker, "Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations," IETF RFC 2501, Jan. 1999.
[84] T. Clausen and P. Jacquet, "Optimized Link State Routing Protocol (OLSR)," IETF RFC 3626, Oct. 2003.
[85] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for Virtual Network Functions in Software-Defined Networks,” HotMIddlebox '16 Proceedings of the 2016 workshop on Hot topics in Middleboxes and Network Function Virtualization Pages 32-37, Aug. 2016. M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.
[86] [B. Johannes, "On Service Chaining and Segment Routing," Bachelor Informatica University of Amsterdam, Jun. 2018.
[87] [Cisco, "Introduction to Segment Routing," Segment Routing Configuration Guide Cisco IOS XE Release 3S, Mar. 2018.
[88] N. Liu and W. K. G. Seah, "Performance evaluation of routing metrics for community Wireless Mesh Networks," 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, 2011, pp. 556-561, Dec. 2011.
[89] K. Helsgaun, "LKH Version 2.0.9”, [Online]. Available:http://akira.ruc.dk/~keld/research/LKH/. [Accessed: Aug. 2019].
[90] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs,” Numerische Mathematik. 23 (3): 269–271, 1959.
[91] T. W. Chen and M. Gerla, “Global State Routing- A New Routing Scheme for Ad-hoc Wireless Networks,” Communications ICC, Aug. 2002.
[92] G. Pei, M. Gerla, and T. W. Chen, “Fisheye state routing: a routing scheme for ad hoc wireless networks,” Communications ICC, Aug. 2002.
[93] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp. 252-259, Aug. 2005.¬
[94] OpenMANO, “OpenMANO”, [Online]. Available: https://wiki.openstack.org/wiki/Tacker. [Accessed: Aug. 2019].
[95] OpenBaton , “OPEN BATON An extensible and customizable NFV MANO-compliant framework”, [Online]. Available: http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab/openmano. [Accessed: Aug. 2019].
[96] A. Halén, "Cloud Monitoring and observation measurements in OpenStack environment," Luleå tekniska universitet, May 2018.
[97] Plumbis, “Reading and Understanding the OSPF Database” ”, [Online]. Available: https://community.cisco.com/t5/networking-documents/reading-and-understanding-the-ospf-database/ta-p/3145995. [Accessed: Aug. 2019].
[98] NetworkX, “Software for complex networks”, [Online]. Available: https://networkx.github.io. [Accessed: Aug. 2019].
[99] SicPy, “Scientific Computing Tools for Python”, [Online]. Available: https://www.scipy.org/about.html. [Accessed: Aug. 2019].
[100] C.Y. Chang, K. AlexandrisS, N. Nikaein, K. Katsalis, and T. Spyropoulos, “MEC Architectural Implications for LTE/LTE-A Networks,” in Proceedings of the Workshop on ACM Mobility in the Evolving Internet Architecture (MobiArch), Oct. 2016.
[101] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini, and C. Bonnet, ”Low Latency MEC Framework for SDN-based LTE/LTE-A Networks,” in Proceedings of IEEE International Conference on Communications (ICC), May 2017.
[102] S.C. Hunag, B.L. Chen, Y.C. Luo, Y.C. Chung, and J. Chou, “Application-aware Traffic Redirection: A Mobile Edge Computing Implementation toward Future 5G Networks,” in Proceedings of IEEE International Symposium on Cloud and Service Computing (SC2), Nov. 2017.
[103] OAI (OpenAirInterface). “A Platform with Open Source Soft- ware for the Core Network, Access Network and User Equipment of 3GPP Cellular Networks”, [Online]. Available: https://www.openairinterface.org. [Accessed: Aug. 2019].
[104] A. Ahmed, and E. Ahmed, “A Survey on Mobile Edge Computing,” in Proceedings of IEEE International Conference on Intelligent Systems and Control (ISCO), Jan. 2016.
[105] T. Taleb, K. Samdanis, and B. Mada, “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration,” IEEE Communications Surveys and Tutorials, Mar. 2017.
[106] P. Mach, and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and Computation Offloading,” IEEE Communications Surveys and Tutorials, Mar. 2017.
[107] Y. Mao, C. You, J. Zhang, K. Hunag, and K. B. Letaief, “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE Communications Surveys and Tutorials, Aug. 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊