|
王如玉(2018),空拍影像之車流辨識與計算,國立交通大學,碩士論文。林銘泓(2019),PairingNet:基於連續影像之端到端車輛辨識與配對網絡,國立交通大學,碩士論文。柳景瑜(2018),結合深度學習車流分析的UAV交通監測平台,國立交通大學,碩士論文。陳鴻君(2018),基於空拍影像之車流資料收集,國立交通大學,碩士論文。黃家耀、李子璋、謝旭昇、羅峻庭、黃郁傑、李威(2014),機車行為模式在都市混合車流中之實証分析及模式建立,交通部科技顧問室研究報告書。 黃家耀、林貴璽、溫雲晨、廖晉毅、張舜淵、歐陽恬恬(2020),無人機交通調查系統及其交通調查方法,中華民國專利(提出申請中)。 黃家耀、林貴璽、廖晉毅、溫雲晨、陳威瑜(2019),高快速公路匝道分匯流區容量及服務水準分析之研究(1/3)-獨立進出口分匯流區,交通部運輸研究所委託計畫。 羅聖學(2017),混合車流及高密度下之車輛影像辨識及軌跡追蹤,國立交通大學,碩士論文。Abdeljaber, O., Younis, A., & Alhajyaseen, W. (2020). Extraction of Vehicle Turning Trajectories at Signalized Intersections Using Convolutional Neural Networks. Arabian Journal for Science and Engineering, 1–15. https://doi.org/10.1007/s13369-020-04546-y Balal, E., Cheu, R. L., & Sarkodie-Gyan, T. (2016). A binary decision model for discretionary lane changing move based on fuzzy inference system. Transportation Research Part C: Emerging Technologies, 67, 47–61. https://doi.org/10.1016/j.trc.2016.02.009 Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., & Eckstein, L. (2019). The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections. arXiv:1911.07602 Bucknell, C., & Herrera, J. C. (2014). A trade-off analysis between penetration rate and sampling frequency of mobile sensors in traffic state estimation. Transportation Research Part C: Emerging Technologies, 46, 132–150. https://doi.org/10.1016/j.trc.2014.05.007 Chen, D., Laval, J., Zheng, Z., & Ahn, S. (2012). A behavioral car-following model that captures traffic oscillations. Transportation Research Part B: Methodological, 46(6), 744–761. https://doi.org/10.1016/j.trb.2012.01.009 Chen, P., Zeng, W., Yu, G., & Wang, Y. (2017). Surrogate Safety Analysis of Pedestrian-Vehicle Conflict at Intersections Using Unmanned Aerial Vehicle Videos. Journal of Advanced Transportation, 2017. https://doi.org/10.1155/2017/5202150 Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(369), 829–836. https://doi.org/10.1080/01621459.1979.10481038 Coifman, B. (2015). Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency. Transportation Research Part B: Methodological, 78, 54–65. https://doi.org/10.1016/j.trb.2015.04.006 Coifman, B., & Li, L. (2017). A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset. Transportation Research Part B: Methodological, 105, 362–377. https://doi.org/10.1016/j.trb.2017.09.018 Deng, W., Lei, H., & Zhou, X. (2013). Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach. Transportation Research Part B: Methodological, 57, 132–157. https://doi.org/10.1016/j.trb.2013.08.015 Edie, L. C. (1963). Discussion of Traffic Stream Measurements and Definitions. Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, 139–154. Fard, M. R., Mohaymany, A. S., & Shahri, M. (2017). A new methodology for vehicle trajectory reconstruction based on wavelet analysis. Transportation Research Part C: Emerging Technologies, 74, 150–167. https://doi.org/10.1016/j.trc.2016.11.010 Hamdar, S. H., Mahmassani, H. S., & Treiber, M. (2015). From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment. Transportation Research Part B: Methodological, 78, 32–53. https://doi.org/10.1016/j.trb.2015.03.011 Hao, H., Ma, W., & Xu, H. (2016). A fuzzy logic-based multi-agent car-following model. Transportation Research Part C: Emerging Technologies, 69, 477–496. https://doi.org/10.1016/j.trc.2015.09.014 He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2980–2988. https://doi.org/10.1109/ICCV.2017.322 He, Z. (2017). Research based on high-fidelity NGSIM vehicle trajectory datasets: A review. Research Gate, 1–33. https://doi.org/10.13140/RG.2.2.11429.60643 He, Z., Zheng, L., & Guan, W. (2015). A simple nonparametric car-following model driven by field data. Transportation Research Part B: Methodological, 80, 185–201. https://doi.org/10.1016/j.trb.2015.07.010 Herrera, J. C., & Bayen, A. M. (2010). Incorporation of Lagrangian measurements in freeway traffic state estimation. Transportation Research Part B: Methodological, 44(4), 460–481. https://doi.org/10.1016/j.trb.2009.10.005 Jabari, S. E., Zheng, J., & Liu, H. X. (2014). A probabilistic stationary speed-density relation based on Newell’s simplified car-following model. Transportation Research Part B: Methodological, 68, 205–223. https://doi.org/10.1016/j.trb.2014.06.006 Jiang, C., Qiu, R., Fu, T., Fu, L., Xiong, B., & Lu, Z. (2020). Impact of right-turn channelization on pedestrian safety at signalized intersections. Accident Analysis and Prevention, 136, 105399. https://doi.org/10.1016/j.aap.2019.105399 Jin, W. L. (2010). A kinematic wave theory of lane-changing traffic flow. Transportation Research Part B: Methodological, 44(8–9), 1001–1021. https://doi.org/10.1016/j.trb.2009.12.014 Jin, W. L. (2013). A multi-commodity Lighthill-Whitham-Richards model of lane-changing traffic flow. Transportation Research Part B: Methodological, 57, 361–377. https://doi.org/10.1016/j.trb.2013.06.002 Kanagaraj, V., Asaithambi, G., Toledo, T., & Lee, T. C. (2015). Trajectory data and flow characteristics of mixed traffic. Transportation Research Record, 2491(1), 1–11. https://doi.org/10.3141/2491-01 Koutsopoulos, H. N., & Farah, H. (2012). Latent class model for car following behavior. Transportation Research Part B: Methodological, 46(5), 563–578. https://doi.org/10.1016/j.trb.2012.01.001 Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. Proceedings of the 21st International Conference on Intelligent Transportation Systems, 2118–2125. https://doi.org/10.1109/ITSC.2018.8569552 Laval, J. A., & Leclercq, L. (2008). Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model. Transportation Research Part B: Methodological, 42(6), 511–522. https://doi.org/10.1016/j.trb.2007.10.004 Laval, J. A., Toth, C. S., & Zhou, Y. (2014). A parsimonious model for the formation of oscillations in car-following models. Transportation Research Part B: Methodological, 70, 228–238. https://doi.org/10.1016/j.trb.2014.09.004 Lee, T. C. (2007). An Agent-Based Model to Simulate Motorcycle Behaviour in Mixed Traffic Flow, Ph.D Dissertation, mperial College London, UK. Available at <http://www.cts.cv.ic.ac.uk/documents/theses/LeePhD.pdf>. Lee, T. C., Polak, J. W., & Bell, M. G. H. (2008). Trajectory Extractor user manual version 1.0, Technical Report, Centre for Transport Studies, ImperialCollege London, UK. Available at . Li, S., Xiang, Q., Ma, Y., Gu, X., & Li, H. (2016). Crash risk prediction modeling based on the traffic conflict technique and a microscopic simulation for freeway interchange merging areas. International Journal of Environmental Research and Public Health, 13(11), 1157. https://doi.org/10.3390/ijerph13111157 Lu, X., & Skabardonis, A. (2007). Freeway Traffic Shockwave Analysis: Exploring NGSIM Trajectory Data. Proceedings of the 86th Annual Meeting of the Transportation Research Board. Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to Modern Photogrammetry. John Wiley & Sons. Inc., New York Montanino, M., & Punzo, V. (2013). Making NGSIM Data Usable for Studies on Traffic Flow Theory: Multistep Method for Vehicle Trajectory Reconstruction. Transportation Research Record, 2390(1), 99–111. https://doi.org/10.3141/2390-11 Montanino, M., & Punzo, V. (2015). Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns. Transportation Research Part B: Methodological, 80, 82–106. https://doi.org/10.1016/j.trb.2015.06.010 Munigety, C. R., Vicraman, V., & Mathew, T.V. (2014). Semiautomated tool for extraction of microlevel traffic data from videographic survey. Transportation Research Record, 2443(1), 88–95. https://doi.org/10.3141/2443-10 Nguyen, L., Hanaoka, S., & Kawasaki, T. (2012). Describing non-lane-based motorcycle movements in motorcycle-only traffic flow. Transportation Research Record, 2281(1), 76–82. https://doi.org/10.3141/2281-10 Piccoli, B., Han, K., Friesz, T. L., Yao, T., & Tang, J. (2015). Second-order models and traffic data from mobile sensors. Transportation Research Part C: Emerging Technologies, 52, 32–56. https://doi.org/10.1016/j.trc.2014.12.013 Przybyla, J., Taylor, J., Jupe, J., & Zhou, X. (2015). Estimating risk effects of driving distraction: A dynamic errorable car-following model. Transportation Research Part C: Emerging Technologies, 50, 117–129. https://doi.org/10.1016/j.trc.2014.07.013 Punzo, V., Borzacchiello, M. T., & Ciuffo, B. (2011). On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data. Transportation Research Part C: Emerging Technologies, 19(6), 1243–1262. https://doi.org/10.1016/j.trc.2010.12.007 Qian, Z. S., Li, J., Li, X., Zhang, M., & Wang, H. (2017). Modeling heterogeneous traffic flow: A pragmatic approach. Transportation Research Part B: Methodological, 99, 183–204. https://doi.org/10.1016/j.trb.2017.01.011 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference Computer Society Conference on Computer Vision and Pattern Recognition, 779–788. https://doi.org/10.1109/CVPR.2016.91 Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition, 6517–6525. https://doi.org/10.1109/CVPR.2017.690 Redmon, J., & Farhadi, A. (2018). YOLOV3: An Incremental Improvement. arXiv:1804.02767. Sala, M., Soriguera, F., Huillca, K., & Vilaplana, V. (2019). Measuring traffic lane-changing by converting video into space–time still images. Computer-Aided Civil and Infrastructure Engineering, 34(6), 488–505. https://doi.org/10.1111/mice.12430 Siqueira, A. F., Peixoto, C. J. T., Wu, C., & Qian, W. L. (2016). Effect of stochastic transition in the fundamental diagram of traffic flow. Transportation Research Part B: Methodological, 87, 1–13. https://doi.org/10.1016/j.trb.2016.02.003 Tak, S., Woo, S., & Yeo, H. (2016). Study on the framework of hybrid collision warning system using loop detectors and vehicle information. Transportation Research Part C: Emerging Technologies, 73, 202–218. https://doi.org/10.1016/j.trc.2016.10.014 Talebpour, A., Mahmassani, H. S., & Hamdar, S. H. (2015). Modeling lane-changing behavior in a connected environment: A game theory approach. Transportation Research Part C: Emerging Technologies, 59, 216–232. https://doi.org/10.1016/j.trc.2015.07.007 Thiemann, C., Treiber, M., & Kesting, A. (2008). Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data. Transportation Research Record, 2088(1), 90–101. https://doi.org/10.3141/2088-10 Tian, J., Treiber, M., Ma, S., Jia, B., & Zhang, W. (2015). Microscopic driving theory with oscillatory congested states: Model and empirical verification. Transportation Research Part B: Methodological, 71, 138–157. https://doi.org/10.1016/j.trb.2014.11.003 Toledo, T., Koutsopoulos, H. N., & Ahmed, K. I. (2007). Estimation of vehicle trajectories with locally weighted regression. Transportation Research Record, 1999(1), 161–169. https://doi.org/10.3141/1999-17 Tordeux, A., Lassarre, S., & Roussignol, M. (2010). An adaptive time gap car-following model. Transportation Research Part B: Methodological, 44(8–9), 1115–1131. https://doi.org/10.1016/j.trb.2009.12.018 Treiterer, J., & Myers, J. (1974). The hysteresis phenomenon in traffic flow. Transportation and Traffic Theory, 6, 13–38. Wang, C., Xu, C., & Dai, Y. (2019). A crash prediction method based on bivariate extreme value theory and video-based vehicle trajectory data. Accident Analysis and Prevention, 123, 365–373. https://doi.org/10.1016/j.aap.2018.12.013 Wang, W., Zhang, W., Guo, H., Bubb, H., & Ikeuchi, K. (2011). A safety-based approaching behavioural model with various driving characteristics. Transportation Research Part C: Emerging Technologies, 19(6), 1202–1214. https://doi.org/10.1016/j.trc.2011.02.002 Wojke, N., Bewley, A., & Paulus, D. (2017). Simple Online and Realtime Tracking with a Deep Association Metric. 2017 IEEE International Conference on Image Processing. https://doi.org/10.1109/ICIP.2017.8296962 Wu, L., & Coifman, B. (2014). Improved vehicle classification from dual-loop detectors in congested traffic. Transportation Research Part C: Emerging Technologies, 46, 222–234. https://doi.org/10.1016/j.trc.2014.04.015 Xu, Y., Yu, G., Wang, Y., Wu, X., & Ma, Y. (2016). A hybrid vehicle detection method based on viola-jones and HOG + SVM from UAV images. Sensors, 16(8), 1325. https://doi.org/10.3390/s16081325 Xu, Y., Yu, G., Wu, X., Wang, Y., & Ma, Y. (2017). An Enhanced Viola-Jones Vehicle Detection Method from Unmanned Aerial Vehicles Imagery. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1845–1856. https://doi.org/10.1109/TITS.2016.2617202 Zhang, T., & Jin, P. J. (2019). A longitudinal scanline based vehicle trajectory reconstruction method for high-angle traffic video. Transportation Research Part C: Emerging Technologies, 103, 104–128. https://doi.org/10.1016/j.trc.2019.03.015 Zhao, X., Dawson, D., Sarasua, W. A., & Birchfield, S. T. (2017). Automated Traffic Surveillance System with Aerial Camera Arrays Imagery: Macroscopic Data Collection with Vehicle Tracking. Journal of Computing in Civil Engineering, 31(3), 04016072. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000646 Zheng, J., Suzuki, K., & Fujita, M. (2013). Car-following behavior with instantaneous driver-vehicle reaction delay: A neural-network-based methodology. Transportation Research Part C: Emerging Technologies, 36, 339–351. https://doi.org/10.1016/j.trc.2013.09.010 Zheng, Z., Ahn, S., Chen, D., & Laval, J. (2013). The effects of lane-changing on the immediate follower: Anticipation, relaxation, and change in driver characteristics. Transportation Research Part C: Emerging Technologies, 26, 367–379. https://doi.org/10.1016/j.trc.2012.10.007
|
| |