|
[1] M. Tu, J. Lin, M. Tsai, S. Jou and C. Chuang, "Single-Ended Subthreshold SRAM With Asymmetrical Write/Read-Assist," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010. [2] M. Tu et al., "A Single-Ended Disturb-Free 9T Subthreshold SRAM With Cross-Point Data-Aware Write Word-Line Structure, Negative Bit-Line, and Adaptive Read Operation Timing Tracing," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1469-1482, June 2012. [3] S. Nalam and B. H. Calhoun, "5T SRAM With Asymmetric Sizing for Improved Read Stability," IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2431-2442, Oct. 2011. [4] D. Jeon et al., "A 23-mW Face Recognition Processor with Mostly-Read 5T Memory in 40-nm CMOS," IEEE J. Solid-State Circuits, vol. 52, no. 6, pp. 1628-1642, June 2017. [5] L. Lu, T. Yoo, L. Van Loi and T. T. Kim, "An Ultra-low Power 8T SRAM with Vertical Read Word Line and Data Aware Write Assist," IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, pp. 1-2, Nov. 2018. [6] R. Baumann, “Soft errors in advanced semiconductor devices—part i: the three radiation sources,” Device and Material Reliability, IEEE Transactions on, vol. 1, no. 1, pp. 17-22, Mar. 2001 [7] S. Baeg, S. Wen, and R. Wong, "SRAM Interleaving Distance Selection With a Soft Error Failure Model," Nuclear Science, IEEE Transactions on, vol.56, no.4, pp. 2111–2118, Aug. 2009. [8] B.D. Yang and L.S. Kim, “A low power SRAM using hierarchical bit line and local sense amplifiers,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 6, pp. 1366–1376, Jun. 2005. [9] C.Y. Lu, M.H. Tu, H.I. Yang, Y.P. Wu, H.S. Huang, Y.J. Lin, K.D. Lee, Y.S. Kao, C.-T. Chuang, S.J. Jou, and W. Hwang, “A 0.33 V, 500 kHz, 3.94 μW 40 nm 72 Kb 9 T subthreshold SRAM with ripple bit-line structure and negative bit-line write-assist,” Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 59, no. 12, Dec. 2012. [10] W.N. Liao, N.C. Lien, C.S. Chang, L.W. Chu, H.I. Yang, C.T. Chuang, S.J. Jou, W. Hwang, M.H. Tu, H.S. Huang, J.H. Wang, P.S. Kan, Y.J. Hu, "A 40nm 1.0Mb 6T pipeline SRAM with digital-based Bit-Line Under-Drive, Three-Step-Up Word-Line, Adaptive Data-Aware Write-Assist with VCS tracking and Adaptive Voltage Detector for boosting control," in Proc. IEEE Int. SOC Conf. (SOCC), pp. 110–115, Sept. 2013. [11] N. Verma and A. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp. 141–149, Jan. 2008. [12] Z. Guo, D. Kim, S. Nalam, J. Wiedemer, X. Wang, E. Karl, “A 23.6Mb/mm2 SRAM in 10nm FinFET Technology with Pulsed PMOS TVC and Stepped-WL for Low-Voltage Applications”, IEEE International Solid-State Circuits Conference (ISSCC), pp. 196-197, Feb. 2018. [13] J. Chang, Y.H. Chen, W.M. Chan, S.P. Singh, H. Cheng, H. Fujiwara, J.Y. Lin, K.C. Lin, J. Hung, R. Lee, H.J. Liao, J.J. Liaw, Q. Li, C.Y. Lin, M.C. Chiang, S.Y. Wu, “A 7nm 256Mb SRAM in High-K Metal-Gate FinFET Technology with Write-Assist Circuitry for Low-VMIN Applications”, IEEE International Solid-State Circuits Conference (ISSCC), pp. 206-207, Feb. 2017. [14] H.I. Yang, Y.W. Lin, M.C. Hsia, G.C. Lin, C.S. Chang, Y. Ni. Chen, C.T. Chuang, W. Hwang, S.J. Jou, N.C. Lien, H.Y. Li, K.D. Lee, W.C. Shih, Y.P. Lee, W. Ta, C.C. Hsu, "High-performance 0.6V VMIN 55nm 1.0Mb 6T SRAM with adaptive BL bleeder," IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1831–1834, May 2012. [15] S. Mukhopadhyay, R. Rao, J. J. Kim, C. T. Chuang, “Capacitive coupling based transient negative bit-line voltage (Tran-NBL) scheme for improving write-ability of SRAM design in nanometer technologies" IEEE International Symposium on Circuits and Systems (ISCAS), pp. 384 – 387, May 2008. [16] K. Itoh, K.A. Shaik, A. Amara, “0.5-V sub-ns open-BL SRAM array with mid-point-sensing multi-power 5T cell”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2892-2895, June 2015. [17] K.H. Tang and S.J. Jou, “A Sub-ns-Access Sub-mW/GHz 28nm 0.45V 32Kb 5T SRAM Implementation and In Memory Computing Architecture”, June 2019. [18] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing System (NIPS), Jan. 2012. [19] M. D. Zeiler, R. Fergus, “Visualizing and Understanding Convolutional Networks”, Computer Vision-ECCV, vol. 8689, pp. 818-833, Nov. 2013. [20] A. Biswas, A.P. Chandrakasan, “Conv-RAM: An Energy-Efficient SRAM with Embedded Convolution Computation for Low-Power CNN-Based Machine Learning Applications”, IEEE International Solid-State Circuits Conference (ISSCC), pp. 488-489, Feb. 2018. [21] S.K. Gonugondla, M. Kang, N. Shanbhag, “A 42pJ/Decision 3.12TOPS/W Robust In-Memory Machine Learning Classifier with On-Chip Training”, IEEE International Solid-State Circuits Conference (ISSCC), pp. 490-491, Feb. 2018. [22] X. Si, J.J. Chen, Y.N. Tu, W.H. Huang, J.H. Wang, Y.C. Chiu, W.C. Wei, S.Y. Wu, X. Sun, R. Liu, S. Yu, R.S. Liu, C.C. Hsieh, K.T. Tang, Q. Li, M.F. Chang, “A Twin-8T SRAM Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning”, IEEE International Solid-State Circuits Conference (ISSCC), pp. 396-397, Feb. 2019. [23] M.A. G. Lorenzo, A.A. S. Manzano, M.T. A. Gusad, J.R. E. Hizon, M. D. Rosales, “Design and Implementation of CMOS Rail-to-Rail Operational Amplifiers”, IEEE International Symposium on Communications and Information Technologies (ISCIT), pp. 61-66, Oct. 2007. [24] D. Marano, G. Palumbo, S. Pennisi, “A New Compact Low-Power High-Speed Rail-to-Rail Class-B Buffer for LCD Applications”, IEEE, J. Display Technology, vol. 6, pp. 184-190, May 2010. [25] M.H. Hamzah, A.B. Jambek, U. Hashim, “Design and analysis of a two-stage CMOS op-amp using Silterra's 0.13 μm technology”, IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 55-59, April 2014.
|