|
[1] S. M. Roy and V. Singh, “Generalized coherent states and the uncertainty principle,” Phys. Rev. D 25(12), 3413 (1982). [2] W. M. Zhang and R. Gilmore, “Coherent states: theory and some applications,” Rev. Mod. Phys. 62(4), 867 (1990). [3] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, “Devil’s staircase in three dimensional coherent waves localized on Lissajous parametric surfaces,” Phys. Rev. Letts. 96(21), 213902 (2006). [4] Y. F. Chen and Y. P. Lan, “Observation of laser transverse modes analogous to a SU(2) wave packet of a quantum harmonic oscillator, ” Phys. Rev. A 66(5), 053812 (2002). [5] Y. F. Chen, Y. C. Lin, W. Z. Zhuang, H. C. Liang, K. W. Su, and K. F. Huang, “Generation of large orbital angular momentum from superposed Bessel beams corresponding to resonant geometric modes,” Phys. Rev. A 85(4), 043833 (2012). [6] K. F. Huang, Y. F. Chen, H. C. Lai, and Y. P. Lan, “Observation of the wave function of a quantum billiard from the transverse patterns of vertical cavity surface emitting lasers,” Phys. Rev. Lett. 89(22), 224102 (2002). [7] C. C. Chen, K. W. Su, Y. F. Chen, and K. F. Huang, “Various high-order modes in vertical-cavity surface-emitting lasers with equilateral triangular lateral confinement,” Opt. Lett. 33(5), 509 (2008). [8] M. Brack and R. K. Bhaduri, Semiclassical physics (Addison-Wesley, 1997). [9] Y. F. Chen, K. F. Huang, and Y. P. Lan, “Localization of wave patterns on classical periodic orbits in a square billiard,” Phys. Rev. E 66(4), 046215 (2002). [10] Y. F. Chen, and K. F. Huang, “Vortex formation of coherent waves in nonseparable mesoscopic billiards,” Phys. Rev. E 68(6), 066207 (2003). [11] M. A. Doncheski and R. W. Robinett, “Quantum mechanical analysis of the equilateral triangle billiard: periodic orbit theory and wave packet revivals,” Ann. Phys. 299, 208 (2002). [12] S. L. Lin, F. Gao, Z. P. Hong, and M. L. Du, “Quantum spectra and classical orbits in two-dimensional equilateral triangular billiards,” Chin. Phys. Lett. 22(1), 9 (2005). [13] C. C. Liu, T. H. Lu, Y.F. Chen, and K.F. Huang, “Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards,” Phys. Rev. E 74(4), 046214 (2006). [14] M. Wright and R. Weaver, New directions in linear acoustics and vibration: quantum chaos, random matrix theory and complexity (Cambridge University Press, 2010). [15] E. G. Altmann, T. Friedrich, A. E. Motter, H. Kantz, and A. Richter, “Prevalence of marginally unstable periodic orbits in chaotic billiards,” Phys. Rev. E 77(1), 016205 (2008). [16] M. A. Rykov and R. V. Skidanov, Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap, Appl. Opt. 53(2), 156 (2014). [17] M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A 87(1), 012326 (2013). [18] W. N. Plick, M. Krenn, R. Fickler, S. Ramelow, and A. Zeilinger, “Quantum orbital angular momentum of elliptically symmetric light,” Phys. Rev. A 87(3), 033806 (2013). [19] M. Shen, Y. Y. Lin, C. C. Jeng, and R. K. Lee, “Vortex pairs in nonlocal nonlinear media,” J. Opt. 14(6), 065204 (2012). [20] H. Sridhar, M. G. Cohen, and J. W. Noé, “Creating optical vortex modes with a single cylinder lens,” Proc. SPIE 7613, 33 (2010). [21] Y. F. Chen, C. C. Chang, C. Y. Lee, J. C. Tung, H. C. Liang, and K. F. Huang, “Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite–Gaussian beams,” Laser Phys. 28(1), 015002 (2018). [22] J. C. Tung, H. C. Liang, T. H. Lu, K. F. Huang, and Y. F. Chen, “Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter,” Opt. Express 24(20), 22796 (2016). [23] A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “Asymmetric Laguerre-Gaussian beams, ” Phys. Rev. A 93(6), 063858 (2016). [24] P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. London A 133(821), 60 (1931). [25] V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, and Y. Bruynseraede, “Effect of sample topology on the critical fields of mesoscopic superconductors,” Nature (London), 373(6512), 319 (1995). [26] A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, “Phase transitions in individual sub-micrometre superconductors,” Nature (London), 390(6657), 259 (1997). [27] R. Prange and S. M. Girvin , The Quantum Hall Effect, (Springer, New York, 1987; Mir, Moscow, 1989). [28] S. Das Sarma and A. Pinczuk , New Perspectives in Quantum Hall Effects, (Wiley, 1997). [29] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein Condensate,” Phys. Rev. Lett. 83(13), 2498 (1999). [30] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, “Vortex Precession in Bose-Einstein Condensates: Observations with Filled and Empty Cores,” Phys. Rev. Lett. 85(14), 2857 (2000). [31] D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8(10), 1568 (1991). [32] D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87 (2001). [33] V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545 (2011). [34] R. W. Gray, C. Dunn, K. P. Thompson, and J. P. Rolland, “An analytic expression for the field dependence of Zernike polynomials in rotationally symmetric optical systems,” Opt. Express 20(15), 16436 (2012). [35] C. J. R. Sheppard, “Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate,” J. Opt. Soc. Am. A 30(10), 2150 (2013). [36] R. K. Tyson, “Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients,” Opt. Lett. 7(6), 262 (1982). [37] J. J. M. Braat and A. J. E. M. Janssen, “Double Zernike expansion of the optical aberration function from its power series expansion,” J. Opt. Soc. Am. A 30(6), 1213 (2013). [38] W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278 (2009). [39] S. Liu, X. Zhou, W. Lv, S. Xu, and H. Wei, “Convolution-variation separation method for efficient modeling of optical lithography,” Opt. Lett. 38(13), 2168 (2013). [40] S. Liu, S. Xu, X. Wu, and W. Liu, “Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model,” Opt. Express 20(13), 14272 (2012). [41] X. Y. Wang, W. Y. Li, H. Y. Yang, P. P. Niu, “Y.W. Li Invariant quaternion radial harmonic Fourier moments for color image retrieval,” Opt. Laser Technol. 66, 78 (2015). [42] G. Amayeh, A. Erol, G. Bebis, and M. Nicolescu, “Accurate and efficient computation of high order Zernike moments, ” Proceedings Lecture Notes in Computer Science 3804, 462-469 (Springer-Verlag, 2005). [43] C. Singh, E. Walia, “Fast and numerically stable methods for the computation of Zernike moments,” Pattern Recognition 43(7), 2497 (2010). [44] H. F. Qin, L. Qin, “A parallel recurrence method for the fast computation of Zernike moments,” Applied Mathematics and Computation 219(4), 1549 (2012). [45] E. C. Kintner, “A recurrence relation for calculating the Zernike polynomials,” Opt. Acta 23, 499 (1976). [46] G. W. Forbes, “Robust and fast computation for the polynomials of optics,” Opt. Express 18(13), 13851 (2010). [47] I .Kaya and J.P. Rolland “Acceleration of computation of φ-polynomials, ” Opt. Express 21(23), 29065 (2013). [48] Y. F. Chen, “Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with SU(2) transformations,” Phys. Rev. A 83(3), 032124 (2011). [49] E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik,” Naturwissenschaften 14(28), 664 (1926). [50] R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207 (1976). [51] B. C. Platt and R. Shack. “History and principles of Shack-Hartmann wavefront sensing.” J. Refractive Surgery 17(5), 573 (2001). [52] S. C. Chapra, R. P. Canale, Numerical Methods for Engineers, (Singapore:McGraw-Hill, 1998), 631. [53] P. J. Davis, P. Rabinowitz, Methods of Numerical Integration, (FL, Orlando:Academic, 1984), 134. [54] A. J. E. M. Janssen and P. Dirksen, "Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform," J. European Opt. Soc. 2, 07012 (2007). [55] B. Honarvar Shakibaei and R. Paramesran, “Recursive formula to compute Zernike radial polynomials,” Opt. Lett. 38(14), 2487 (2013). [56] T. B. Andersen, "Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates," Opt. Express 26(15), 18878 (2018). [57] L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080 (2011). [58] J. Yang, X. Wang, S. Li, L. Duan, D. Xu, A. Bourov, and A. Erdmann, “High order aberration measurement technique based on quadratic Zernike model with optimized source,” Opt. Eng. 52(5), 053603 (2013). [59] A. Khotanzad, Y. H. Hong, “Invariant image recognition by Zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489 (1990). [60] K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827 (1996). [61] Y. Song, D. Milam, and W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24(24), 1805 (1999). [62] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313 (2001). [63] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa, “Motion of vortex lines in quantum mechanics motion of vortex lines in quantum mechanics,” Phys. Rev. A 61(3), 032110 (2000). [64] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin, “Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy,” Ultramicroscopy 88(2), 85 (2001). [65] I. V. Zozoulenko and K. F. Berggren, “Quantum scattering, resonant states and conductance fluctuations in an open square electron billiard,” Phys. Rev. B 56(11), 6931 (1997). [66] A. D. Peters, C. Jaffé, and J. B. Delos, “Quantum manifestations of bifurcations of classical orbits: An exactly solvable model,” Phys. Rev. Lett. 73(21), 2825 (1994). [67] M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677 (1993). [68] S. C. Bloch, Introduction to Classic and Quantum Harmonic Oscillators (New York: Wiley-Blackwell, 1997). [69] J. Hietarinta, “Direct methods for the search of the second invariant,” Phys. Rep. 147(2), 87 (1987) [70] N. Bowditch, “On the motion of a pendulum suspended from two points,” Memoirs of the American Academy of Arts and Sciences 3, 413 (1815). [71] J. Lissajous, “M´emoire sur l’´etude optique des mouvements vibratoires,” Ann. Chim. Phys. 51, 147 (1857). [72] S. Flügge, Practical Quantum Mechanics (Springer-Verlag, New York, 1971), 107. [73] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C.Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025 (1997). [74] H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state laser via off axis pumping,” Opt. Laser Technol. 28(3), 213 (1996). [75] E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53(16), 1515 (1984). [76] S. W. McDonald and A. N. Kaufman, “Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories,” Phys. Rev. Lett. 42(18), 1189 (1979). [77] M. V. Berry, “Regular and irregular semiclassical wavefunctions,” J. Phys. A: Math. Gen. 10(12), 2083 (1977). [78] R. W. Robinett, “Isolated versus nonisolated periodic orbits in variants of the two-dimensional square and circular billiards,” J. Math. Phys. 40(1), 101 (1999). [79] R. W. Robinett, “Quantum wave packet revivals,” Phys. Rep. 392(1-2), 1 (2004). [80] C.-H. Zhang, F. Kassubek, and C. A. Stafford, “Surface fluctuations and the stability of metal nanowires,” Phys. Rev. B 68(16), 165414 (2003). [81] C. Lafargue, M. Lebental, A. Grigis, C. Ulysse, I. Gozhyk, N. Djellali, J. Zyss, and S. Bittner, “Localized lasing modes of triangular organic microlasers,” Phys. Rev. E 90(5), 052922 (2014). [82] H.-J. Stöckmann, Quantum Chaos-An Introduction (Cambridge University Press, 1999). [83] G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J. vol. 40(2), 489 (1961). [84] G. D. Boyd and H. Kogelnik, “Generalized confocal resonator theory,” Bell Sys. Tech. J. 41(4), 1347 (1962). [85] D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523 (1964). [86] D. R. Herriott, and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883 (1965). [87] A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40(5), 519 (2004). [88] D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340 (2016). [89] Y. F. Chen, J. C. Tung, P. Y. Chiang, H. C. Liang, and K. F. Huang, “Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping,” Phys. Rev. A 88(1), 013827 (2013). [90] Y. F. Chen, C. C. Chang, C. Y. Lee, C. L. Sung, J. C. Tung, K. W. Su, H. C. Liang, W. D. Chen, and G. Zhang, “High-peak-power large-angular-momentum beams generated from passively Q-switched geometric modes with astigmatic transformation,” Photon. Res. 5(6), 561 (2017). [91] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Usingoptical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645 (2012). [92] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305 (2007). [93] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448 (2004). [94] W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1971) , 442. [95] B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590 (1997). [96] A. E. Siegman, Lasers (University Science, 1986). [97] A. A. Goshtasby, Image Registration: Principles, Tools and Methods (Springer Science & Bussiness Media, 2012), 7. [98] S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, “Quasiscarred resonances in a spiral-shaped microcavity,” Phys. Rev. Lett. 93(16), 164102 (2004). [99] L. V. Kreminskaya, M. S. Soskin, and A. I. Krizhnyak, “The Gaussian lenses give birth to optical vortices in laser beams,” Opt. Commun. 145(1-6), 377 (1998). [100] S. Chávez-Cerda, J. C. Gutiérrez-Vega, G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett. 26(22), 1803 (2001). [101] S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15(14), 8619 (2007). [102] A. Desyatnikov, Y. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291 (2005). [103] Y. H. Hsieh, Y. H. Lai, C. H. Tsou, H. C. Liang, K. F. Huang, and Y. F. Chen, “Experimental and theoretical explorations for optimizing high-power geometric modes in diode-pumped solid-state lasers,” Laser Phys. Lett. 15(7), 075802 (2018). [104] Y. H. Hsieh, Y. H. Lai, M. X. Xie, K. F. Huang, and Y. F. Chen, “Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution,” Opt. Express 26(24), 31738 (2018). [105] J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28(11), 872 (2003). [106] G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2002)
|