跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝彥輝
研究生(外文):Hsieh, Yen-Hui
論文名稱:研究量子系統與雷射共振腔的波包函數之表徵與相位奇異點
論文名稱(外文):Exploring Wave-Packet Representations and Phase Singularities for Mesoscopic Quantum Systems and Laser Resonators
指導教授:陳永富陳永富引用關係
指導教授(外文):Chen, Yung-Fu
口試委員:黃凱風施宙聰林本堅簡昭欣鄭舜仁周碩彥
口試委員(外文):Huang, Kai-FengShy, Jow-TsongLin, Burn-JengChien, Chao-HsinCheng, Shun-JenChou, Shuo-Yen
口試日期:2020-05-21
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:166
中文關鍵詞:雷射波粒雙重性結構光數學物理
外文關鍵詞:LasersRay-Wave DualityStructured LightsMathematical Physics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究介觀系統中具有古典-量子對應性之同調波函數的理論模式,以及雷射系統中同調結構光束的相位奇異點特徵。首先,我們推導出Hermite-Laguerre-Gaissian (HLG) 以及 Zernike 函數的積分形式,使其運算能更為高效且高精準。基於積分的方法,我們不僅將二維簡諧振盪中能的同調態以高斯函數的積分表示,並以此表示式直覺地呈現古典-量子對應現象以及相位結構。在量子彈子球檯的系統中,我們利用同調態得出古典軌跡的方程式。受此方程式啟發,我們進一步從單向激發源的非齊次Helmholtz方程式得出系統的共振模態,此模態成功地描述面射型雷射中橫向模態的結構特徵。
除了量子與古典間的對應性,我們也研究離軸激發下固態雷射系統能產生的結構性光束。利用共振模態與熱透鏡效應,我們成功地找到簡併腔中高功率幾何模態產生的最佳化條件。最佳化的幾何模態能被進一步轉換為帶有大角動量以及特殊相位奇異點的環形幾何模態。我們也提出一套理論與實驗分析的模式,以HLG模態為例,分析模態轉換中相位奇異點的產生與湮滅。最後,我們將大的損耗引入固態雷射共腔腔內,產生了不對稱分布的Laguerre-Gaussian (LG)模態。與傳統的LG模態相比,此模態能呈現重新排列的奇異點分布並帶有新的奇異點。
This thesis demonstrates various methods to construct the coherent wave representation for quantum-classical connection in the mesoscopic systems and phase singularities of coherent structure beams in laser systems. First of all, we originally introduce the integration methodology to effectively and precisely generate the well-known special functions including Hermite-Laguerre-Gaissian (HLG) functions and Zernike polynomials. Based on the integration methodology, we represent the stationary coherent states for two-dimensional (2D) quantum harmonic oscillators as an integral of Gaussian wave packet to intuitively reveal the quantum-classical correspondence and the quantum phase structures. Extending to 2D integrable quantum billiards, the stationary coherent states are exploited to extract the trajectory equations that inspire us to further derive resonant states from the inhomogeneous Helmholtz equation with unidirectional excitation for manifesting the experimental structured transverse patterns of vertical-cavity surface-emitting lasers (VCSELs).
In addition to the quantum-classical correspondence, we systematically explore the structured light generated from the diode-pumped solid state lasers with off-axis pumping scheme. By using the resonant modes derived from inhomogeneous Helmholtz equation and considering the thermal lens effect, we successfully optimize the generation of high-power, stable geometric laser beams under the degenerate cavities. The optimized geometric modes (GMs) can be further transformed to circular-GMs with large orbital angular momentum and unique phase singularities. In non-degenerate cavity, we originally propose a method to investigate the creation and annihilation of phase singularities during the astigmatic transformation of HLG modes and utilize the Mach-Zehnder interferometer to manifest the theoretical simulations. Finally, we introduce large dissipation in to the laser resonator to generate the asymmetrical Laguerre-Gaussian (LG) modes with rearranged and newly formed phase singularities with respect to the common LG modes.
摘要 i
Abstract ii
致謝 iv
Contents vi
List of Figures viii

Chapter 1 Background and General Introduction................................ 1
1.1 Motivation......................................................................................... 2
1.2 Overview of Thesis......................................................................... 6
REFERENCES ........................................................................................................... 8
Chapter 2 Developing the Integral Representation for Special Functions…………………………………………………..... 11
2.1 Generation of Hermite-Laguerre-Gaussian Modes........................... 13
2.2 Generation of Zernike Polynomials.................................................. 24
REFERENCES ........................................................................................................... 44
Chapter 3 Constructing Wave Functions for Quantum-Classical Connections……………………………………………….. 48
3.1 Wave Packet States of 2D Harmonic Oscillator............................... 50
3.2 Stationary Coherent States of 2D Harmonic Oscillator.................... 53
3.3 Stationary Coherent States and Classical Trajectories of Integrable Quantum Billiards............................................................................. 65
REFERENCES ........................................................................................................... 94
Chapter 4 Optimizing the Generation of Geometric Laser Modes...... 97
4.1 Planar and Non-Planar Geometric Modes........................................ 98
4.2 Stability range of the Cavity Length for Geometric Modes…......... 101
4.3 Optimization of the High-Power Geometric Modes......................... 110
REFERENCES ........................................................................................................... 116
Chapter 5 Exploring Phase Singularities of Structured Laser Beams………………..………………………………………. 118
5.1 Creation and Annihilation of Phase Singularities in the Beam Transformation from Hermite-Gaussian Modes to Laguerre-Gaussian Modes……………….………………….…….. 120
5.2 Generation of Asymmetrical Laguerre-Gaussian Modes in the Resonator with Large Dissipation..................................................... 135
REFERENCES ........................................................................................................... 152
Chapter 6 Summary and Future Works................................................. 154
6.1 Summary........................................................................................... 155
6.2 Future Work...................................................................................... 158
Curriculum Viate .................................................................................................. 162
Publication List .................................................................................................. 163
[1] S. M. Roy and V. Singh, “Generalized coherent states and the uncertainty principle,” Phys. Rev. D 25(12), 3413 (1982).
[2] W. M. Zhang and R. Gilmore, “Coherent states: theory and some applications,” Rev. Mod. Phys. 62(4), 867 (1990).
[3] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, “Devil’s staircase in three dimensional coherent waves localized on Lissajous parametric surfaces,” Phys. Rev. Letts. 96(21), 213902 (2006).
[4] Y. F. Chen and Y. P. Lan, “Observation of laser transverse modes analogous to a SU(2) wave packet of a quantum harmonic oscillator, ” Phys. Rev. A 66(5), 053812 (2002).
[5] Y. F. Chen, Y. C. Lin, W. Z. Zhuang, H. C. Liang, K. W. Su, and K. F. Huang, “Generation of large orbital angular momentum from superposed Bessel beams corresponding to resonant geometric modes,” Phys. Rev. A 85(4), 043833 (2012).
[6] K. F. Huang, Y. F. Chen, H. C. Lai, and Y. P. Lan, “Observation of the wave function of a quantum billiard from the transverse patterns of vertical cavity surface emitting lasers,” Phys. Rev. Lett. 89(22), 224102 (2002).
[7] C. C. Chen, K. W. Su, Y. F. Chen, and K. F. Huang, “Various high-order modes in vertical-cavity surface-emitting lasers with equilateral triangular lateral confinement,” Opt. Lett. 33(5), 509 (2008).
[8] M. Brack and R. K. Bhaduri, Semiclassical physics (Addison-Wesley, 1997).
[9] Y. F. Chen, K. F. Huang, and Y. P. Lan, “Localization of wave patterns on classical periodic orbits in a square billiard,” Phys. Rev. E 66(4), 046215 (2002).
[10] Y. F. Chen, and K. F. Huang, “Vortex formation of coherent waves in nonseparable mesoscopic billiards,” Phys. Rev. E 68(6), 066207 (2003).
[11] M. A. Doncheski and R. W. Robinett, “Quantum mechanical analysis of the equilateral triangle billiard: periodic orbit theory and wave packet revivals,” Ann. Phys. 299, 208 (2002).
[12] S. L. Lin, F. Gao, Z. P. Hong, and M. L. Du, “Quantum spectra and classical orbits in two-dimensional equilateral triangular billiards,” Chin. Phys. Lett. 22(1), 9 (2005).
[13] C. C. Liu, T. H. Lu, Y.F. Chen, and K.F. Huang, “Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards,” Phys. Rev. E 74(4), 046214 (2006).
[14] M. Wright and R. Weaver, New directions in linear acoustics and vibration: quantum chaos, random matrix theory and complexity (Cambridge University Press, 2010).
[15] E. G. Altmann, T. Friedrich, A. E. Motter, H. Kantz, and A. Richter, “Prevalence of marginally unstable periodic orbits in chaotic billiards,” Phys. Rev. E 77(1), 016205 (2008).
[16] M. A. Rykov and R. V. Skidanov, Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap, Appl. Opt. 53(2), 156 (2014).
[17] M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A 87(1), 012326 (2013).
[18] W. N. Plick, M. Krenn, R. Fickler, S. Ramelow, and A. Zeilinger, “Quantum orbital angular momentum of elliptically symmetric light,” Phys. Rev. A 87(3), 033806 (2013).
[19] M. Shen, Y. Y. Lin, C. C. Jeng, and R. K. Lee, “Vortex pairs in nonlocal nonlinear media,” J. Opt. 14(6), 065204 (2012).
[20] H. Sridhar, M. G. Cohen, and J. W. Noé, “Creating optical vortex modes with a single cylinder lens,” Proc. SPIE 7613, 33 (2010).
[21] Y. F. Chen, C. C. Chang, C. Y. Lee, J. C. Tung, H. C. Liang, and K. F. Huang, “Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite–Gaussian beams,” Laser Phys. 28(1), 015002 (2018).
[22] J. C. Tung, H. C. Liang, T. H. Lu, K. F. Huang, and Y. F. Chen, “Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter,” Opt. Express 24(20), 22796 (2016).
[23] A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “Asymmetric Laguerre-Gaussian beams, ” Phys. Rev. A 93(6), 063858 (2016).
[24] P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. London A 133(821), 60 (1931).
[25] V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, and Y. Bruynseraede, “Effect of sample topology on the critical fields of mesoscopic superconductors,” Nature (London), 373(6512), 319 (1995).
[26] A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, “Phase transitions in individual sub-micrometre superconductors,” Nature (London), 390(6657), 259 (1997).
[27] R. Prange and S. M. Girvin , The Quantum Hall Effect, (Springer, New York, 1987; Mir, Moscow, 1989).
[28] S. Das Sarma and A. Pinczuk , New Perspectives in Quantum Hall Effects, (Wiley, 1997).
[29] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein Condensate,” Phys. Rev. Lett. 83(13), 2498 (1999).
[30] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, “Vortex Precession in Bose-Einstein Condensates: Observations with Filled and Empty Cores,” Phys. Rev. Lett. 85(14), 2857 (2000).
[31] D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8(10), 1568 (1991).
[32] D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87 (2001).
[33] V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545 (2011).
[34] R. W. Gray, C. Dunn, K. P. Thompson, and J. P. Rolland, “An analytic expression for the field dependence of Zernike polynomials in rotationally symmetric optical systems,” Opt. Express 20(15), 16436 (2012).
[35] C. J. R. Sheppard, “Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate,” J. Opt. Soc. Am. A 30(10), 2150 (2013).
[36] R. K. Tyson, “Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients,” Opt. Lett. 7(6), 262 (1982).
[37] J. J. M. Braat and A. J. E. M. Janssen, “Double Zernike expansion of the optical aberration function from its power series expansion,” J. Opt. Soc. Am. A 30(6), 1213 (2013).
[38] W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278 (2009).
[39] S. Liu, X. Zhou, W. Lv, S. Xu, and H. Wei, “Convolution-variation separation method for efficient modeling of optical lithography,” Opt. Lett. 38(13), 2168 (2013).
[40] S. Liu, S. Xu, X. Wu, and W. Liu, “Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model,” Opt. Express 20(13), 14272 (2012).
[41] X. Y. Wang, W. Y. Li, H. Y. Yang, P. P. Niu, “Y.W. Li Invariant quaternion radial harmonic Fourier moments for color image retrieval,” Opt. Laser Technol. 66, 78 (2015).
[42] G. Amayeh, A. Erol, G. Bebis, and M. Nicolescu, “Accurate and efficient computation of high order Zernike moments, ” Proceedings Lecture Notes in Computer Science 3804, 462-469 (Springer-Verlag, 2005).
[43] C. Singh, E. Walia, “Fast and numerically stable methods for the computation of Zernike moments,” Pattern Recognition 43(7), 2497 (2010).
[44] H. F. Qin, L. Qin, “A parallel recurrence method for the fast computation of Zernike moments,” Applied Mathematics and Computation 219(4), 1549 (2012).
[45] E. C. Kintner, “A recurrence relation for calculating the Zernike polynomials,” Opt. Acta 23, 499 (1976).
[46] G. W. Forbes, “Robust and fast computation for the polynomials of optics,” Opt. Express 18(13), 13851 (2010).
[47] I .Kaya and J.P. Rolland “Acceleration of computation of φ-polynomials, ” Opt. Express 21(23), 29065 (2013).
[48] Y. F. Chen, “Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with SU(2) transformations,” Phys. Rev. A 83(3), 032124 (2011).
[49] E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik,” Naturwissenschaften 14(28), 664 (1926).
[50] R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207 (1976).
[51] B. C. Platt and R. Shack. “History and principles of Shack-Hartmann wavefront sensing.” J. Refractive Surgery 17(5), 573 (2001).
[52] S. C. Chapra, R. P. Canale, Numerical Methods for Engineers, (Singapore:McGraw-Hill, 1998), 631.
[53] P. J. Davis, P. Rabinowitz, Methods of Numerical Integration, (FL, Orlando:Academic, 1984), 134.
[54] A. J. E. M. Janssen and P. Dirksen, "Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform," J. European Opt. Soc. 2, 07012 (2007).
[55] B. Honarvar Shakibaei and R. Paramesran, “Recursive formula to compute Zernike radial polynomials,” Opt. Lett. 38(14), 2487 (2013).
[56] T. B. Andersen, "Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates," Opt. Express 26(15), 18878 (2018).
[57] L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080 (2011).
[58] J. Yang, X. Wang, S. Li, L. Duan, D. Xu, A. Bourov, and A. Erdmann, “High order aberration measurement technique based on quadratic Zernike model with optimized source,” Opt. Eng. 52(5), 053603 (2013).
[59] A. Khotanzad, Y. H. Hong, “Invariant image recognition by Zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489 (1990).
[60] K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827 (1996).
[61] Y. Song, D. Milam, and W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24(24), 1805 (1999).
[62] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313 (2001).
[63] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa, “Motion of vortex lines in quantum mechanics motion of vortex lines in quantum mechanics,” Phys. Rev. A 61(3), 032110 (2000).
[64] L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin, “Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy,” Ultramicroscopy 88(2), 85 (2001).
[65] I. V. Zozoulenko and K. F. Berggren, “Quantum scattering, resonant states and conductance fluctuations in an open square electron billiard,” Phys. Rev. B 56(11), 6931 (1997).
[66] A. D. Peters, C. Jaffé, and J. B. Delos, “Quantum manifestations of bifurcations of classical orbits: An exactly solvable model,” Phys. Rev. Lett. 73(21), 2825 (1994).
[67] M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65(3), 677 (1993).
[68] S. C. Bloch, Introduction to Classic and Quantum Harmonic Oscillators (New York: Wiley-Blackwell, 1997).
[69] J. Hietarinta, “Direct methods for the search of the second invariant,” Phys. Rep. 147(2), 87 (1987)
[70] N. Bowditch, “On the motion of a pendulum suspended from two points,” Memoirs of the American Academy of Arts and Sciences 3, 413 (1815).
[71] J. Lissajous, “M´emoire sur l’´etude optique des mouvements vibratoires,” Ann. Chim. Phys. 51, 147 (1857).
[72] S. Flügge, Practical Quantum Mechanics (Springer-Verlag, New York, 1971), 107.
[73] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C.Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33(6), 1025 (1997).
[74] H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state laser via off axis pumping,” Opt. Laser Technol. 28(3), 213 (1996).
[75] E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53(16), 1515 (1984).
[76] S. W. McDonald and A. N. Kaufman, “Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories,” Phys. Rev. Lett. 42(18), 1189 (1979).
[77] M. V. Berry, “Regular and irregular semiclassical wavefunctions,” J. Phys. A: Math. Gen. 10(12), 2083 (1977).
[78] R. W. Robinett, “Isolated versus nonisolated periodic orbits in variants of the two-dimensional square and circular billiards,” J. Math. Phys. 40(1), 101 (1999).
[79] R. W. Robinett, “Quantum wave packet revivals,” Phys. Rep. 392(1-2), 1 (2004).
[80] C.-H. Zhang, F. Kassubek, and C. A. Stafford, “Surface fluctuations and the stability of metal nanowires,” Phys. Rev. B 68(16), 165414 (2003).
[81] C. Lafargue, M. Lebental, A. Grigis, C. Ulysse, I. Gozhyk, N. Djellali, J. Zyss, and S. Bittner, “Localized lasing modes of triangular organic microlasers,” Phys. Rev. E 90(5), 052922 (2014).
[82] H.-J. Stöckmann, Quantum Chaos-An Introduction (Cambridge University Press, 1999).
[83] G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J. vol. 40(2), 489 (1961).
[84] G. D. Boyd and H. Kogelnik, “Generalized confocal resonator theory,” Bell Sys. Tech. J. 41(4), 1347 (1962).
[85] D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523 (1964).
[86] D. R. Herriott, and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883 (1965).
[87] A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40(5), 519 (2004).
[88] D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340 (2016).
[89] Y. F. Chen, J. C. Tung, P. Y. Chiang, H. C. Liang, and K. F. Huang, “Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping,” Phys. Rev. A 88(1), 013827 (2013).
[90] Y. F. Chen, C. C. Chang, C. Y. Lee, C. L. Sung, J. C. Tung, K. W. Su, H. C. Liang, W. D. Chen, and G. Zhang, “High-peak-power large-angular-momentum beams generated from passively Q-switched geometric modes with astigmatic transformation,” Photon. Res. 5(6), 561 (2017).
[91] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Usingoptical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645 (2012).
[92] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305 (2007).
[93] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448 (2004).
[94] W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1971) , 442.
[95] B. Ozygus and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71(18), 2590 (1997).
[96] A. E. Siegman, Lasers (University Science, 1986).
[97] A. A. Goshtasby, Image Registration: Principles, Tools and Methods (Springer Science & Bussiness Media, 2012), 7.
[98] S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, “Quasiscarred resonances in a spiral-shaped microcavity,” Phys. Rev. Lett. 93(16), 164102 (2004).
[99] L. V. Kreminskaya, M. S. Soskin, and A. I. Krizhnyak, “The Gaussian lenses give birth to optical vortices in laser beams,” Opt. Commun. 145(1-6), 377 (1998).
[100] S. Chávez-Cerda, J. C. Gutiérrez-Vega, G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett. 26(22), 1803 (2001).
[101] S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15(14), 8619 (2007).
[102] A. Desyatnikov, Y. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291 (2005).
[103] Y. H. Hsieh, Y. H. Lai, C. H. Tsou, H. C. Liang, K. F. Huang, and Y. F. Chen, “Experimental and theoretical explorations for optimizing high-power geometric modes in diode-pumped solid-state lasers,” Laser Phys. Lett. 15(7), 075802 (2018).
[104] Y. H. Hsieh, Y. H. Lai, M. X. Xie, K. F. Huang, and Y. F. Chen, “Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution,” Opt. Express 26(24), 31738 (2018).
[105] J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28(11), 872 (2003).
[106] G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2002)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top