跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭鏡容
研究生(外文):Peng, Jing-Rong
論文名稱:有機金屬化學氣相沉積成長之重摻雜P型氮化鎵/氮化鋁鎵的鎂活化與擴散研究
論文名稱(外文):Study of activation and diffusion of magnesium in heavily Mg-doped p-GaN/AlGaN grown by MOCVD
指導教授:周武清
指導教授(外文):Chou, Wu-Ching
口試委員:陳衛國洪瑞華鄭湘原楊祝壽
口試委員(外文):Chen, Wei-KuoHorng, Ray-HuaJeng, Syang-YwanYang, Chu-Shou
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:鎂摻雜氮化鎵氮化鎵p型氮化鎵活化鎂原子擴散鎂原子析出
外文關鍵詞:Mg-doped GaNGaNp-GaNactivationMg diffusionMg segregation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用金屬有機物化學氣相沉積系統成長P型氮化鎵/氮化鋁鎵,分析其飽和濃度、表面析出物、活化率、與鎂原子的擴散。
透過調變二茂鎂流量,隨著流量增加,發光機制逐漸被深層施子與受子對復合發光主導,深層施子缺陷(VN)的螢光也逐漸增強。另外,拉曼光譜顯示樣品隨流量增加壓縮遞減而逐漸往伸張應力偏移。當鎂逐漸在表面析出時,可以推論摻雜濃度應趨近於飽和,霍爾量測得出450 sccm的樣品之鎂活化率達2.22%最大值,比一般文獻報導的1%高,且電洞濃度沒有發生反轉,由於成長的結構設計與存在應力有關。
在P型氮化鎵/氮化鋁鎵介面之間使用氮化鋁插入層,發現即使在摻雜濃度達飽和的情況下,同樣可以提升活化率且有效阻擋鎂原子擴散,因為插入氮化鋁層影響應力分佈而降低擴散。從低溫光譜與拉曼的結果也證實了氮化鋁插入層使P型氮化鎵呈些微壓縮應力,並減少氮空缺形成。
In this thesis, the metal organic chemical vapor deposition system is used to grow p-GaN/AlGaN. The saturation concentration, morphology, activation rate, and diffusion of magnesium atoms are analyzed.
By modulating the flow rate of Cp2Mg, the luminescence mechanism was gradually dominated by the deep donor-acceptor pair (DAP) recombination when the flow rate increases. The emission intensity of the deep donor-related defects (VN) was strongly enhanced. Raman spectroscopy shows that the sample gradually shifts from the compressive strain to the tensile stress as the flow rate increases. The saturation of p-type doping can be inferred by the segregation of magnesium on the sample surface. The Hall measurement showed that the activation rate of the 450 sccm sample reached a maximum value of 2.22%, which is higher than 1% reported in the literature. There was no hole concentration reverse observed due to the structure design and existence of stress.
By using an AlN interlayer at the interface of p-GaN/AlGaN, the activation rate can also be improved when the doping concentration reaches saturation, and the diffusion of magnesium atoms can be effectively suppressed. It is due to the existence of AlN interlayer affects the stress distribution and further suppress the diffusion. The photoluminescence (PL) and Raman measurements also confirmed that the existence of AlN interlayer results in a slight compressive stress in the p-GaN and further reduces the formation of nitrogen vacancies.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii

第一章 緒論 1
1.1氮化鎵(GaN)材料簡介與發展 1
1.2鎂摻雜氮化鎵(p-GaN)材料簡介 3
1.3鎂摻雜氮化鎵(p-GaN)在HEMT上的應用與發展 5
1.4研究動機 8

第二章 樣品結構與實驗儀器原理 10
2.1樣品結構與參數 10
2.2量測儀器及原理 12
2.2.1光激螢光光譜(Photoluminescence Spectroscopy) 12
2.2.2拉曼光譜(Raman Spectroscopy) 15
2.2.3掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 17
2.2.4能量色散X-射線光譜(Energy dispersive X-ray spectrometer, EDS) 19
2.2.5原子力顯微鏡(Atomic Force Microscope, AFM) 20
2.2.6二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS) 21
2.2.7霍爾量測(Hall measurement) 22

第三章 結果與討論 24
3.1不同鎂流量與光性、表面形貌、電性之關係 24
3.1.1低溫(10K)光激螢光光譜與鎂流量之關係 24
3.1.2拉曼光譜與鎂流量之關係 30
3.1.3表面形貌量測結果與分析 34
3.1.4電性量測結果與分析 40
3.1.5第一系列樣品量測分析小結 45
3.2引入插入層與光性、表面形貌、電性之關係 46
3.2.1電性量測結果與分析 46
3.2.2表面形貌量測結果與分析 52
3.2.3引入插入層之低溫(10K)光激螢光光譜分析 53
3.2.4引入插入層之拉曼光譜分析 55
3.2.5第二系列樣品量測分析小結 57

第四章 結論 58

參考文獻 59
[1] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 907-914, 2003.
[2] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, no. 10, pp. 455-457, 1989.
[3] T. Boles, "GaN-on-Silicon–Present capabilities and future directions," in AIP Conference Proceedings, 2018, vol. 1934, no. 1: AIP Publishing LLC, p. 020001.
[4] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994.
[5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Japanese Journal of Applied Physics, vol. 31, no. 2B, p. L139, 1992.
[6] H. Obloh et al., "Self-compensation in Mg doped p-type GaN grown by MOCVD," Journal of crystal growth, vol. 195, no. 1-4, pp. 270-273, 1998.
[7] S. Hautakangas et al., "Vacancy defects as compensating centers in Mg-doped GaN," Physical review letters, vol. 90, no. 13, p. 137402, 2003.
[8] G. Miceli and A. Pasquarello, "Self-compensation due to point defects in Mg-doped GaN," Physical Review B, vol. 93, no. 16, p. 165207, 2016.
[9] L. Chuah, Z. Hassan, S. Ng, and H. A. Hassan, "High carrier concentrations of n-and p-doped GaN on Si (111) by nitrogen plasma-assisted molecular-beam epitaxy," Journal of Materials Research, vol. 22, no. 9, pp. 2623-2630, 2007.
[10] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, 2002.
[11] S. Lenci et al., "Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination," IEEE Electron Device Letters, vol. 34, no. 8, pp. 1035-1037, 2013.
[12] K. J. Chen and C. Zhou, "Enhancement‐mode AlGaN/GaN HEMT and MIS‐HEMT technology," physica status solidi (a), vol. 208, no. 2, pp. 434-438, 2011.
[13] I. Hwang et al., "p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current," IEEE electron device letters, vol. 34, no. 2, pp. 202-204, 2013.
[14] B. Bakeroot, S. Stoffels, N. Posthuma, D. Wellekens, and S. Decoutere, "Trading Off between Threshold Voltage and Subthreshold Slope in AlGaN/GaN HEMTs with a p-GaN Gate," in 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019: IEEE, pp. 419-422.
[15] A. N. Tallarico et al., "PBTI in GaN-HEMTs With p-Type Gate: Role of the Aluminum Content on $\Delta V_ {\mathrm {TH}} $ and Underlying Degradation Mechanisms," IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 38-44, 2017.
[16] N. Posthuma et al., "Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance," in 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016: IEEE, pp. 95-98.
[17] T.-L. Wu et al., "Analysis of the gate capacitance–voltage characteristics in p-GaN/AlGaN/GaN heterostructures," IEEE Electron Device Letters, vol. 38, no. 12, pp. 1696-1699, 2017.
[18] L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen, and F. Udrea, "On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices," Applied Physics Letters, vol. 110, no. 12, p. 123502, 2017.
[19] X. Tang, B. Li, H. A. Moghadam, P. Tanner, J. Han, and S. Dimitrijev, "Mechanism of Threshold Voltage Shift in ${p} $-GaN Gate AlGaN/GaN Transistors," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1145-1148, 2018.
[20] J. He, G. Tang, and K. J. Chen, "V TH Instability of ${p} $-GaN Gate HEMTs Under Static and Dynamic Gate Stress," IEEE Electron Device Letters, vol. 39, no. 10, pp. 1576-1579, 2018.
[21] A. N. Tallarico, S. Stoffels, N. Posthuma, S. Decoutere, E. Sangiorgi, and C. Fiegna, "Threshold voltage instability in GaN HEMTs with p-Type gate: Mg doping compensation," IEEE Electron Device Letters, vol. 40, no. 4, pp. 518-521, 2019.
[22] L. Efthymiou, K. Murukesan, G. Longobardi, F. Udrea, A. Shibib, and K. Terrill, "Understanding the threshold voltage instability during off-state stress in p-GaN HEMTs," IEEE Electron Device Letters, vol. 40, no. 8, pp. 1253-1256, 2019.
[23] K. J. Lee, E. H. Shin, J. Y. Kim, T. S. Oh, and K. Y. Lim, "Growth of High Quality GaN Epilayers with Si $ _ {x} $ N $ _ {y} $ Inserting Layer on Si (111) Substrates," Journal of the Korean Physical Society, vol. 45, no. 9, pp. 756-759, 2004.
[24] B. Monemar et al., "The dominant shallow 0.225 eV acceptor in GaN," physica status solidi (b), vol. 243, no. 7, pp. 1604-1608, 2006.
[25] B. Monemar et al., "Evidence for two Mg related acceptors in GaN," Physical review letters, vol. 102, no. 23, p. 235501, 2009.
[26] U. Kaufmann et al., "Origin of defect-related photoluminescence bands in doped and nominally undoped GaN," Physical Review B, vol. 59, no. 8, p. 5561, 1999.
[27] J. Buckeridge et al., "Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals," Physical review letters, vol. 114, no. 1, p. 016405, 2015.
[28] S. Nayak, M. Gupta, U. V. Waghmare, and S. Shivaprasad, "Origin of Blue Luminescence in Mg-Doped Ga N," Physical Review Applied, vol. 11, no. 1, p. 014027, 2019.
[29] M. A. Reshchikov, D. Demchenko, J. D. McNamara, S. Fernández-Garrido, and R. Calarco, "Green luminescence in Mg-doped GaN," Physical Review B, vol. 90, no. 3, p. 035207, 2014.
[30] K. Kojima et al., "Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate," Applied Physics Express, vol. 10, no. 6, p. 061002, 2017.
[31] S. Yan-Ping and Y. Guang-Hui, "Effect of Mg Doping on the Photoluminescence of GaN: Mg Films by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy," Chinese Physics Letters, vol. 28, no. 6, p. 067807, 2011.
[32] L. Macht, J. Weyher, A. Grzegorczyk, and P. Larsen, "Statistical photoluminescence of dislocations and associated defects in heteroepitaxial GaN grown by metal organic chemical vapor deposition," Physical Review B, vol. 71, no. 7, p. 073309, 2005.
[33] J. Lyons, A. Janotti, and C. Van de Walle, "Carbon impurities and the yellow luminescence in GaN," Applied Physics Letters, vol. 97, no. 15, p. 152108, 2010.
[34] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, "Hole conductivity and compensation in epitaxial GaN: Mg layers," Physical Review B, vol. 62, no. 16, p. 10867, 2000.
[35] Y. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media, 2010.
[36] D. Behr, J. Wagner, J. Schneider, H. Amano, and I. Akasaki, "Resonant Raman scattering in hexagonal GaN," Applied physics letters, vol. 68, no. 17, pp. 2404-2406, 1996.
[37] G. Callsen et al., "Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements," Applied Physics Letters, vol. 98, no. 6, p. 061906, 2011.
[38] M. Kuball et al., "High-pressure high-temperature annealing of ion-implanted GaN films monitored by visible and ultraviolet micro-Raman scattering," J. Appl. Phys., vol. 87, no. 6, pp. 2736-2741, 2000.
[39] V. Y. Davydov et al., "Phonon dispersion and Raman scattering in hexagonal GaN and AlN," Physical Review B, vol. 58, no. 19, p. 12899, 1998.
[40] H. Harima, "Properties of GaN and related compounds studied by means of Raman scattering," Journal of Physics: Condensed Matter, vol. 14, no. 38, p. R967, 2002.
[41] L. Ning-Yang et al., "Improvement of doping efficiency in Mg-Al0. 14Ga0. 86N/GaN superlattices with AlN interlayer by suppressing donor-like defects," Chinese Physics B, vol. 21, no. 11, p. 117304, 2012.
[42] J. Neugebauer and C. G. Van de Walle, "Atomic geometry and electronic structure of native defects in GaN," Physical Review B, vol. 50, no. 11, p. 8067, 1994.
[43] R. Kirste et al., "Compensation effects in GaN: Mg probed by Raman spectroscopy and photoluminescence measurements," J. Appl. Phys., vol. 113, no. 10, p. 103504, 2013.
[44] C. Flynn and W. Lee, "The dependence of Raman scattering on Mg concentration in Mg-doped GaN grown by MBE," Materials Research Express, vol. 1, no. 2, p. 025901, 2014.
[45] S. Zlotnik et al., "Growth and thermal annealing for acceptor activation of p-type (Al) GaN epitaxial structures: Technological challenges and risks," Applied Surface Science, vol. 488, pp. 688-695, 2019.
[46] P. Vennéguès et al., "Pyramidal defects in metalorganic vapor phase epitaxial Mg doped GaN," Applied Physics Letters, vol. 77, no. 6, pp. 880-882, 2000.
[47] S. Figge, R. Kröger, T. Böttcher, P. L. Ryder, and D. Hommel, "Magnesium segregation and the formation of pyramidal defects in p-GaN," Applied physics letters, vol. 81, no. 25, pp. 4748-4750, 2002.
[48] W.-C. Ke, S.-J. Lee, S.-L. Chen, C.-Y. Kao, and W.-C. Houng, "Effects of growth conditions on the acceptor activation of Mg-doped p-GaN," Materials Chemistry and Physics, vol. 133, no. 2-3, pp. 1029-1033, 2012.
[49] K. Iwata et al., "Atomic resolution structural analysis of magnesium segregation at a pyramidal inversion domain in a GaN epitaxial layer," Applied Physics Express, vol. 12, no. 3, p. 031004, 2019.
[50] P. Vennéguès et al., "Atomic structure of pyramidal defects in Mg-doped GaN," Physical Review B, vol. 68, no. 23, p. 235214, 2003.
[51] S. Khromov, C. Hemmingsson, H. Amano, B. Monemar, L. Hultman, and G. Pozina, "Luminescence related to high density of Mg-induced stacking faults in homoepitaxially grown GaN," Physical Review B, vol. 84, no. 7, p. 075324, 2011.
[52] N. Tetsuo, I. Nobuyuki, T. Kazuyoshi, K. Keita, and K. Tetsu, "Wide range doping control and defect characterization of GaN layers with various Mg concentrations," J. Appl. Phys., vol. 124, no. 16, p. 165706, 2018.
[53] A. Kumar et al., "Comparative Analysis of Defects in Mg-Implanted and Mg-Doped GaN Layers on Freestanding GaN Substrates," Nanoscale research letters, vol. 13, no. 1, pp. 1-8, 2018.
[54] H. Qi et al., "The self-compensation effect of heavily Mg doped p-GaN films studied by SIMS and photoluminescence," Superlattices Microstruct., vol. 133, p. 106177, 2019.
[55] A. Teke et al., "GaN/AlGaN back-illuminated multiple-quantum-well Schottky barrier ultraviolet photodetectors," Solid-State Electronics, vol. 47, no. 8, pp. 1401-1408, 2003.
[56] Z. Dridi, B. Bouhafs, and P. Ruterana, "First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1− xN, InxGa1− xN and InxAl1− xN alloys," Semiconductor science and technology, vol. 18, no. 9, p. 850, 2003.
[57] Y. Taniyasu and M. Kasu, "Improved emission efficiency of 210-nm deep-ultraviolet aluminum nitride light-emitting diode," NTT Tech. Rev, vol. 8, no. 8, pp. 1-5, 2010.
[58] L. Wang et al., "Strain modulation-enhanced Mg acceptor activation efficiency of Al 0.14 Ga 0.86 N/GaN superlattices with AlN interlayer," Applied Physics Letters, vol. 96, no. 6, p. 061110, 2010.
[59] B. Sarkar et al., "High free carrier concentration in p-GaN grown on AlN substrates," Applied Physics Letters, vol. 111, no. 3, p. 032109, 2017.
[60] H.-C. Chiu et al., "High-performance normally off p-GaN gate HEMT with composite AlN/Al 0.17 Ga 0.83 N/Al 0.3 Ga 0.7 N barrier layers design," IEEE Journal of the Electron Devices Society, vol. 6, pp. 201-206, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊