跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈宥竹
研究生(外文):Shen, Yu-Chu
論文名稱:以分子束磊晶技術成長的二維電子氣氮化銦鎵與氮化鋁異質接面之成長與特性研究
論文名稱(外文):Study of growth and characteristics of two dimensional electron gas (2DEG) InGaN/AlN heterostructure grown by molecular beam epitaxy
指導教授:周武清
口試委員:陳衛國楊祝壽鄭湘原洪瑞華
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:分子束磊晶氮化銦鎵二維電子氣螢光光譜反射光譜表面特性
外文關鍵詞:MBEInGaN2DEGPLreflectancemorphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以分子束磊晶系統成長氮化銦鎵薄膜與氮化鋁/氮化銦鎵異質結構於以有機金屬氣相沉積法所製備的氮化鎵基板上,目的是優化半導體特性以應用於高頻與高功率之高電子遷移率電晶體。特性利用低溫光激螢光光譜、低溫反射光譜與X光繞射分析。並且使用原子力顯微鏡、掃描式電子顯微鏡及於磊晶過程即時觀察反射式高能電子繞射圖形,分析其表面形貌。再透過調變銦、鎵元素通量與長晶溫度,成長銦組成含量為3.9% 至14.4%的氮化銦鎵薄膜樣品,而表面粗糙度低至0.63 nm,且並無相分離的現象。而後使用較高銦組成含量(14.4%)的氮化銦鎵作為通道層,成長氮化鋁/氮化銦鎵異質結構,其二維電子氣載子遷移率為515 cm2/V,而最佳的片電荷濃度為1.54×1013 cm-2,片電阻值為789 Ω/sq。
Molecular beam epitaxy was used to fabricate the InxGa1-xN thin films and AlN/InGaN hetero-structures on the GaN substrates grown by metal organic chemical vapor deposition to optimize the characteristics for the application in the high electron mobility transistor (HEMT) of high frequency and high power. The optical properties were studied by photoluminescence (PL), reflectance spectroscopy (R) and X-ray diffraction (XRD). The morphology was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and in-situ reflective high energy electron diffraction. By the control of In/Ga flux ratio and growth temperature, we successfully optimized the InxGa1-xN (x=0.039 ~ 0.144) epilayers without phase separation and achieved the surface roughness of 0.63 nm. The electron mobility μ=515 cm2/V, sheet carrier concentration n=1.54x1013 cm-2, and sheet resistance R=789 Ω/sq could be achieved in the AlN/InxGa1-xN two dimensional electron gas (2DEG) hetero-structures with a high composition InxGa1-xN (x=0.144) channel layer.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 氮化鎵研究背景與其應用 1
1.2 氮化銦鎵與二維電子氣異質結構 3
1.2.1 氮化銦鎵磊晶概述 3
1.2.2 三族氮化物晶體結構與極化 4
1.2.3 氮化鋁/氮化銦鎵異質結構 6
1.3 研究動機 7
第二章、實驗儀器與樣品製備 8
2.1樣品製備儀器與參數設定 9
2.1.1電漿輔助式分子束磊晶系統 ( plasma-assisted molecular beam epitaxy system, PA-MBE) 9
2.1.2 樣品製備 12
2.1.3 分子束磊晶參數 14
2.2 實驗分析儀器與原理 21
2.2.2反射光譜系統(Reflectivity spectroscopy) 24
2.2.3 X光繞射系統 ( X-ray diffraction system, XRD) 25
2.2.4原子力顯微鏡( Atomic force microscope, AFM) 26
2.2.5掃描式電子顯微鏡( Scanning electron microscope, SEM) 27
2.2.6霍爾量測系統( Hall measurement system) 28
第三章 結果與討論 30
3.1 氮化銦鎵薄膜光學特性分析 30
3.1.1 改變銦鎵元素通量比之氮化銦鎵光激螢光光譜分析 31
3.1.2 改變長晶溫度之氮化銦鎵薄膜光學特性分析 35
3.2 氮化銦鎵薄膜表面特性分析 43
3.2.2 改變長晶溫度之氮化銦鎵薄膜表面特性分析 46
3.2.3 不同組成之氮化銦鎵表面特性分析 49
3.3 氮化鋁/氮化銦鎵異質結構特性分析 51
第四章 結論 55
參考文獻 56
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994.
[2] R. Ma, K. H. Teo, S. Shinjo, K. Yamanaka, and P. M. Asbeck, "A GaN PA for 4G LTE-Advanced and 5G: Meeting the telecommunication needs of various vertical sectors including automobiles, robotics, health care, factory automation, agriculture, education, and more," IEEE Microwave Magazine, vol. 18, no. 7, pp. 77-85, 2017.
[3] G. Stringfellow, "Microstructures produced during the epitaxial growth of InGaN alloys," Journal of Crystal Growth, vol. 312, no. 6, pp. 735-749, 2010.
[4] A. Tabata et al., "Phase separation suppression in InGaN epitaxial layers due to biaxial strain," Applied physics letters, vol. 80, no. 5, pp. 769-771, 2002.
[5] I.-H. Kim, H.-S. Park, Y.-J. Park, and T. Kim, "Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films," Applied Physics Letters, vol. 73, no. 12, pp. 1634-1636, 1998.
[6] H. Komaki, R. Katayama, K. Onabe, M. Ozeki, and T. Ikari, "Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE," Journal of crystal growth, vol. 305, no. 1, pp. 12-18, 2007.
[7] X. Shen, T. Ide, M. Shimizu, and H. Okumura, "Growth and characterizations of InGaN on N-and Ga-polarity GaN grown by plasma-assisted molecular-beam epitaxy," Journal of crystal growth, vol. 237, pp. 1148-1152, 2002.
[8] F. Naranjo et al., "Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy," Materials Science and Engineering: B, vol. 93, no. 1-3, pp. 131-134, 2002.
[9] D.-J. Kim, Y.-T. Moon, K.-M. Song, I.-H. Lee, and S.-J. Park, "Effect of growth pressure on indium incorporation during the growth of InGaN by MOCVD," Journal of electronic materials, vol. 30, no. 2, pp. 99-102, 2001.
[10] N. Okamoto, K. Hoshino, N. Hara, M. Takikawa, and Y. Arakawa, "MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000cm2/Vs," Journal of crystal growth, vol. 272, no. 1-4, pp. 278-284, 2004.
[11] M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, "MOVPE growth of thick homogeneous InGaN directly on sapphire substrate using AlN buffer layer," Solid-State Electronics, vol. 41, no. 2, pp. 145-147, 1997.
[12] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, "Optical band gap in Ga 1− x In x N (0< x< 0.2) on GaN by photoreflection spectroscopy," Applied physics letters, vol. 73, no. 14, pp. 1994-1996, 1998.
[13] S. Hussain, "Structural and optical characterization of green-yellow light emitting devices with high indium concentrated (In, Ga) N quantum wells," 2014.
[14] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of applied physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[15] E. A. Jones, F. F. Wang, and D. Costinett, "Review of commercial GaN power devices and GaN-based converter design challenges," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, 2016.
[16] W. Saito et al., "High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior," IEEE Transactions on electron devices, vol. 50, no. 12, pp. 2528-2531, 2003.
[17] V. Adivarahan, M. Gaevski, A. Koudymov, J. Yang, G. Simin, and M. A. Khan, "Selectively doped high-power AlGaN/InGaN/GaN MOS-DHFET," IEEE electron device letters, vol. 28, no. 3, pp. 192-194, 2007.
[18] C. Wang, K. Tsubaki, N. Kobayashi, T. Makimoto, and N. Maeda, "Electron transport properties in AlGaN/InGaN/GaN double heterostructures grown by metalorganic vapor phase epitaxy," Applied physics letters, vol. 84, no. 13, pp. 2313-2315, 2004.
[19] A. Able, W. Wegscheider, K. Engl, and J. Zweck, "Growth of crack-free GaN on Si (1 1 1) with graded AlGaN buffer layers," Journal of Crystal Growth, vol. 276, no. 3-4, pp. 415-418, 2005.
[20] J. Xiong et al., "Characterization of crystal lattice constant and dislocation density of crack-free GaN films grown on Si (1 1 1)," Applied Surface Science, vol. 257, no. 4, pp. 1161-1165, 2010.
[21] S. Gustafsson et al., "Dispersive effects in microwave AlGaN/AlN/GaN HEMTs with carbon-doped buffer," IEEE Transactions on Electron Devices, vol. 62, no. 7, pp. 2162-2169, 2015.
[22] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, "Optical bandgap energy of wurtzite InN," Applied Physics Letters, vol. 81, no. 7, pp. 1246-1248, 2002.
[23] G. Li et al., "Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN," Applied physics letters, vol. 74, no. 19, pp. 2821-2823, 1999.
[24] M. A. Reshchikov, D. Demchenko, A. Usikov, H. Helava, and Y. Makarov, "Carbon defects as sources of the green and yellow luminescence bands in undoped GaN," Physical Review B, vol. 90, no. 23, p. 235203, 2014.
[25] C. Hums et al., "Fabry-Perot effects in In Ga N∕ Ga N heterostructures on Si-substrate," Journal of Applied Physics, vol. 101, no. 3, p. 033113, 2007.
[26] A. Billeb, W. Grieshaber, D. Stocker, E. Schubert, and R. Karlicek Jr, "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Applied physics letters, vol. 70, no. 21, pp. 2790-2792, 1997.
[27] E. Papadomanolaki, C. Bazioti, S. Kazazis, M. Androulidaki, G. Dimitrakopulos, and E. Iliopoulos, "Molecular beam epitaxy of thick InGaN (0001) films: Effects of substrate temperature on structural and electronic properties," Journal of Crystal Growth, vol. 437, pp. 20-25, 2016.
[28] C. Sun et al., "Photoluminescence study of high quality InGaN–GaN single heterojunctions," Applied physics letters, vol. 69, no. 5, pp. 668-670, 1996.
[29] H.-C. Lin et al., "Growth temperature effects on InxGa1− xN films studied by X-ray and photoluminescence," Journal of crystal growth, vol. 189, pp. 57-60, 1998.
[30] T. Kitamura, X.-Q. Shen, M. Sugiyama, H. Nakanishi, M. Shimizu, and H. Okumura, "Generation of cubic phase in molecular-beam-epitaxy-grown hexagonal InGaN epilayers on InN," Japanese journal of applied physics, vol. 45, no. 1R, p. 57, 2006.
[31] H. Li et al., "Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels," Applied Physics Letters, vol. 112, no. 7, p. 073501, 2018.
[32] P. Miraglia, E. Preble, A. Roskowski, S. Einfeldt, and R. Davis, "Helical-type surface defects in GaN thin films epitaxially grown on GaN templates at reduced temperatures," Journal of crystal growth, vol. 253, no. 1-4, pp. 16-25, 2003.
[33] X. Wu et al., "Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 72, no. 6, pp. 692-694, 1998.
[34] M. Sanchez-Garcia et al., "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)," Journal of crystal growth, vol. 183, no. 1-2, pp. 23-30, 1998.
[35] Y. Saito, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, "Growth of high-electron-mobility InN by RF molecular beam epitaxy," Japanese Journal of Applied Physics, vol. 40, no. 2A, p. L91, 2001.
[36] T. Tao et al., "Surface morphology and composition studies in InGaN/GaN film grown by MOCVD," Journal of Semiconductors, vol. 32, no. 8, p. 083002, 2011.
[37] S. Surender, K. Prabakaran, R. Loganathan, S. Pradeep, S. Singh, and K. Baskar, "Effect of growth temperature on InGaN/GaN heterostructures grown by MOCVD," Journal of Crystal Growth, vol. 468, pp. 249-251, 2017.
[38] B. Jahnen et al., "Pinholes, dislocations and strain relaxation in InGaN," Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 3, 1998.
[39] T. Lenka, G. Dash, and A. Panda, "RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT," Journal of Semiconductors, vol. 34, no. 11, p. 114003, 2013.
[40] O. Laboutin et al., "InGaN channel high electron mobility transistor structures grown by metal organic chemical vapor deposition," Applied Physics Letters, vol. 100, no. 12, p. 121909, 2012.
[41] G. Thaler, D. Koleske, S. Lee, K. Bogart, and M. Crawford, "Thermal stability of thin InGaN films on GaN," Journal of crystal growth, vol. 312, no. 11, pp. 1817-1822, 2010.
[42] I. Smorchkova et al., "AlN/GaN and (Al, Ga) N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy," Journal of Applied Physics, vol. 90, no. 10, pp. 5196-5201, 2001.
[43] R. Chu et al., "Strong quantum confinement and high carrier concentration in AlGaN/InGaN/GaN heterostructure field-effect transistors," Applied Physics A, vol. 77, no. 5, pp. 669-671, 2003.
[44] G. Simin et al., "AlGaN/InGaN/GaN double heterostructure field-effect transistor," Japanese Journal of Applied Physics, vol. 40, no. 11A, p. L1142, 2001.
[45] H. Ikki et al., "AlGaN/GaInN/GaN heterostructure field‐effect transistor," physica status solidi (a), vol. 208, no. 7, pp. 1614-1616, 2011.
[46] J. Xie et al., "Electron mobility in InGaN channel heterostructure field effect transistor structures with different barriers," Applied Physics Letters, vol. 91, no. 26, p. 262102, 2007.
[47] W. Lanford et al., "AlGaN/InGaN HEMTs for RF current collapse suppression," Electronics Letters, vol. 40, no. 12, pp. 771-772, 2004.
[48] N. Pala et al., "Low frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors," Solid-State Electronics, vol. 47, no. 6, pp. 1099-1104, 2003.
電子全文 電子全文(網際網路公開日期:20250727)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊