|
[1] P.Simon andY.Gogotsi, “Materials for Electrochemical Capacitors,” Nat. Mater., vol. 7, pp. 845–854, 2008. [2] B. K.Kim, S.Sy, A.Yu, andJ.Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion,” Handb. Clean Energy Syst., pp. 1–25, 2015. [3] L. L.Zhang andX. S.Zhao, “Carbon-based materials as supercapacitor electrodes,” Chem. Soc. Rev., vol. 38, no. 9, pp. 2520–2531, 2009. [4] W.Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., &Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater., vol. 4, pp. 366–377, 2005. [5] J.Schindall, “The Charge of the Ultracapacitors,” IEEE Spectr., pp. 42–46, 2007. [6] B. E.Conway, “Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage,” J. Electrochem. Soc., vol. 138, pp. 1539–1548, 1991. [7] Samantara, A.K, andS.Ratha, Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective. Springer, 2017. [8] C. C.Hu, K. H.Chang, M. C.Lin, andY. T.Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett., vol. 6, no. 12, pp. 2690–2695, 2006. [9] F.Wang, S.Xiao, Y.Hou, C.Hu, L.Liu, andY.Wu, “Electrode materials for aqueous asymmetric supercapacitors,” RSC Adv., vol. 3, no. 32, pp. 13059–13084, 2013. [10] X.Li andB.Wei, “Supercapacitors based on nanostructured carbon,” Nano Energy, vol. 2, no. 2, pp. 159–173, 2013. [11] T.Chen andL.Dai, “Flexible supercapacitors based on carbon nanomaterials,” J. Mater. Chem. A, vol. 2, no. 28, pp. 10756–10775, 2014. [12] S.Sarangapani, B.V.Tilak, andC.-P.Chen, “Materials for Electrochemical Capacitors,” J. Electrochem. Soc., vol. 143, no. 11, pp. 3791–3799, 1996. [13] B. E.Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.” Springer US, 2013. [14] Q.Lu, J. G.Chen, andJ. Q.Xiao, “Nanostructured electrodes for high-performance pseudocapacitors,” Angew. Chemie - Int. Ed., vol. 52, no. 7, pp. 1882–1889, 2013. [15] G.Wang, L.Zhang, andJ.Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012. [16] J. W.B.E. Conway, V. Birss, “The role and utilization of pseudocapacitance for energy storage by supercapacitors,” J. Power Sources, vol. 66, pp. 1–14, 1997. [17] T.Liu, W. G.Pell, andB. E.Conway, “Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes,” Electrochim. Acta, vol. 42, no. 23–24, pp. 3541–3552, 1997. [18] A. D.Jagadale, V. S.Kumbhar, R. N.Bulakhe, andC. D.Lokhande, “Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes,” Energy, vol. 64, pp. 234–241, 2014. [19] A. G.Pandolfo andA. F.Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources, vol. 157, no. 1, pp. 11–27, 2006. [20] B. E.Conway, “Electrochemical supercapacitors: scientific fundamentals and technological applications.” Kluwer academic/Plenum, New York, 1999. [21] A. K.Shukla, S.Sampath, andK.Vijayamohanan, “Electrochemical supercapacitors: Energy storage beyond batteries,” Curr. Sci., vol. 79, no. 12, pp. 1656–1661, 2000. [22] C.Liu, Z.Yu, D.Neff, A.Zhamu, andB. Z.Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, no. 12, pp. 4863–4868, 2010. [23] J. R. Miller and A. F. Burke, “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications,” Electrochem. Soc. Interface, vol. 17, no. 1, pp. 53–57, 2008. [24] H.Chen, T. N.Cong, W.Yang, C.Tan, Y.Li, andY.Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, 2009. [25] and Y. C.Liangbing Hu, Jang Wook Choi, Yuan Yang, Sangmoo Jeong, Fabio La Mantia, Li-Feng Cui, “Highly conductive paper for energy-storage devices,” Proc. Natl. Acad. Sci., vol. 106, pp. 21490–21494, 2009. [26] S. R.Sivakkumar, J. M.Ko, D. Y.Kim, B. C.Kim, andG. G.Wallace, “Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors,” Electrochim. Acta, vol. 52, no. 25, pp. 7377–7385, 2007. [27] K.Levine, “Synthesis, Characterization and properties of polypyrrole/Polyimide composites,” 2002. [28] A.Rudge, J.Davey, I.Raistrick, S.Gottesfeld, andJ. P.Ferraris, “Conducting polymers as active materials in electrochemical capacitors,” J. Power Sources, vol. 47, no. 1–2, pp. 89–107, 1994. [29] Iijima S, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. November, pp. 56–58, 1991. [30] M. S.Dresselhaus, G.Dresselhaus, andR.Saito, “Physics of carbon nanotubes,” Carbon N. Y., vol. 33, no. 7, pp. 883–891, 1995. [31] E. G.Gamaly andT. W.Ebbesen, “Mechanism of carbon nanotube formation in the arc discharge,” Phys. Rev. B, vol. 52, no. 3, pp. 2083–2089, 1995. [32] R. H.Baughman, A. A.Zakhidov, andW. A.DeHeer, “Carbon nanotubes - The route toward applications,” Science (80-. )., vol. 297, no. 5582, pp. 787–792, 2002. [33] C.Wang, J.Zhang, K.Ryu, A.Badmaev, L. G.DeArco, andC.Zhou, “Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications,” Nano Lett., vol. 9, no. 12, pp. 4285–4291, 2009. [34] M. A.Meitl et al., “Solution casting and transfer printing single-walled carbon nanotube films,” Nano Lett., vol. 4, no. 9, pp. 1643–1647, 2004. [35] R. H.Schmidt, I. A.Kinloch, A. N.Burgess, andA. H.Windle, “The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films,” Langmuir, vol. 23, no. 10, pp. 5707–5712, 2007. [36] J.Wang andM.Musameh, “Carbon nanotube screen-printed electrochemical sensors,” Analyst, vol. 129, no. 1, pp. 1–2, 2004. [37] F. G.Zeng, C. C.Zhu, W.Liu, andX.Liu, “The fabrication and operation of fully printed Carbon nanotube field emission displays,” Microelectronics J., vol. 37, no. 6, pp. 495–499, 2006. [38] W. B.Choi et al., “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett., vol. 78, no. 11, pp. 1547–1549, 2001. [39] E.Ramasamy, W. J.Lee, D. Y.Lee, andJ. S.Song, “Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells,” Electrochem. commun., vol. 10, no. 7, pp. 1087–1089, 2008. [40] R. C.Tenent et al., “UItrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying,” Adv. Mater., vol. 21, no. 31, pp. 3210–3216, 2009. [41] Y. S.Chien et al., “The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method,” J. Nanosci. Nanotechnol., vol. 12, no. 7, pp. 5423–5428, 2012. [42] C.Du, J.Yeh, andN.Pan, “Carbon nanotube thin films with ordered structures,” J. Mater. Chem., vol. 15, no. 5, pp. 548–550, 2005. [43] C. D.Lokhande, D. P.Dubal, andO. S.Joo, “Metal oxide thin film based supercapacitors,” Curr. Appl. Phys., vol. 11, no. 3, pp. 255–270, 2011. [44] X. C.Dong et al., “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano, vol. 6, no. 4, pp. 3206–3213, 2012. [45] R. B.Rakhi, W.Chen, D.Cha, andH. N.Alshareef, “High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes,” J. Mater. Chem., vol. 21, no. 40, pp. 16197–16204, 2011. [46] X.Cao et al., “Preparation of novel 3D graphene networks for supercapacitor applications,” Small, vol. 7, no. 22, pp. 3163–3168, 2011. [47] X.Huang, B.Sun, S.Chen, andG.Wang, “Self-assembling synthesis of free-standing nanoporous graphene-transition- metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors,” Chem. - An Asian J., vol. 9, no. 1, pp. 206–211, 2014. [48] K.Liang, X.Tang, andW.Hu, “High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode,” J. Mater. Chem., vol. 22, no. 22, pp. 11062–11067, 2012. [49] X.Ma, J.Liu, C.Liang, X.Gong, andR.Che, “A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH)2/GO/CNTs composite with excellent supercapacitor performance,” J. Mater. Chem. A, vol. 2, no. 32, pp. 12692–12696, 2014. [50] B.Ren, M.Fan, Q.Liu, J.Wang, D.Song, andX.Bai, “Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode,” Electrochim. Acta, vol. 92, pp. 197–204, 2013. [51] P.Lin et al., “The nickel oxide/CNT composites with high capacitance for supercapacitor,” J. Electrochem. Soc., vol. 157, no. 7, pp. 818–823, 2010. [52] M.Yao, Z.Hu, Y.Liu, P.Liu, Z.Ai, andO.Rudolf, “3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes,” J. Alloys Compd., vol. 648, pp. 414–418, 2015. [53] J.Zhu et al., “CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors,” J. Solid State Chem., vol. 184, pp. 578–583, 2011. [54] J. W.Lee, T.Ahn, J. H.Kim, J. M.Ko, andJ. D.Kim, “Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors,” Electrochim. Acta, vol. 56, no. 13, pp. 4849–4857, 2011. [55] B.Vidhyadharan et al., “High performance supercapacitor electrodes from electrospun nickel oxide nanowires,” J. Alloys Compd., vol. 610, pp. 143–150, 2014. [56] S.Zhu et al., “In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors,” Mater. Lett., vol. 161, pp. 731–734, 2015. [57] W.Yu, X.Jiang, S.Ding, andB. Q.Li, “Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors,” J. Power Sources, vol. 256, pp. 440–448, 2014. [58] Y.Wang, Y.Song, andY.Xia, “Electrochemical capacitors: Mechanism, materials, systems, characterization and applications,” Chem. Soc. Rev., vol. 45, no. 21, pp. 5925–5950, 2016. [59] and K. M.A. K. Shukla, “Electrochemical Power Sources,” Electron. Power, vol. 6, no. 8, pp. 72–81, 2003. [60] M. F.Yu, O.Lourie, M. J.Dyer, K.Moloni, T. F.Kelly, andR. S.Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science (80-. )., vol. 287, no. 5453, pp. 637–640, 2000. [61] S. I.Kim, J. S.Lee, H. J.Ahn, H. K.Song, andJ. H.Jang, “Facile route to an efficient nio supercapacitor with a three-dimensional nanonetwork morphology,” ACS Appl. Mater. Interfaces, vol. 5, no. 5, pp. 1596–1603, 2013. [62] L.Li, G.Xia, W.Yu, A.Zhang, K.Lu, andS.Wang, “Low-energy hydrothermal fabrication of α-Ni(OH)2 nanosheet arrays as efficient electrodes for sustainable supercapacitors,” Sustain. Mater. Technol., vol. 20, p. e00085, 2018. [63] Y.Zhang et al., “In situ preparation of flower-like α-Ni(OH)2 and NiO from nickel formate with excellent capacitive properties as electrode materials for supercapacitors,” Mater. Chem. Phys., vol. 151, pp. 160–166, 2015. [64] X.Yan, X.Tong, J.Wang, C.Gong, M.Zhang, andL.Liang, “Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application,” J. Alloys Compd., vol. 593, pp. 184–189, 2014. [65] P. E.Lokhande andU. S.Chavan, “Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications,” Mater. Lett., vol. 218, pp. 225–228, 2018. [66] J. W.Lee, T.Ahn, D.Soundararajan, J. M.Ko, andJ. D.Kim, “Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior,” Chem. Commun., vol. 47, no. 22, pp. 6305–6307, 2011. [67] M. A.Peck andM. A.Langell, “Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS,” Chem. Mater., vol. 24, no. 23, pp. 4483–4490, 2012. [68] G.Cai et al., “Electrochromo-supercapacitor based on direct growth of NiO nanoparticles,” Nano Energy, vol. 12, pp. 258–267, 2015. [69] N.Duraisamy, A.Numan, S. O.Fatin, K.Ramesh, andS.Ramesh, “Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application,” J. Colloid Interface Sci., vol. 471, pp. 136–144, 2016. [70] J.Lv, Z.Wang, andH.Miura, “Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application,” Solid State Commun., vol. 269, no. October 2017, pp. 45–49, 2018. [71] X.Hui, L.Qian, G.Harris, T.Wang, andJ.Che, “Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition,” Mater. Des., vol. 109, pp. 242–250, 2016. [72] S.Lv, C.Wang, andS.Xing, “Hexamethylenetetramine-induced synthesis of hierarchical NiO nanostructures on nickel foam and their electrochemical properties,” J. Alloys Compd., vol. 603, pp. 190–196, 2014. [73] A.Xiao, S.Zhou, C.Zuo, Y.Zhuan, andX.Ding, “Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage,” Mater. Res. Bull., vol. 61, pp. 54–57, 2015. [74] J.Wang et al., “Nanosheet-assembled hollow NiO ball-flower for high-performance supercapacitor,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8020–8026, 2016. [75] L.Jinlong, Z.Wang, L.Tongxiang, Y.Meng, K.Suzuki, andH.Miura, “The effect of graphene coated nickel foam on the microstructures of NiO and their supercapacitor performance,” J. Electroanal. Chem., vol. 799, no. February, pp. 595–601, 2017.
|