跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石雅琪
研究生(外文):Shih, Ya-Chi
論文名稱:利用水熱法生長鎳氧化物於噴塗式奈米碳管之超級電容研究
論文名稱(外文):Study on the Hydrothermally-Grown Nickel Oxides on the Sprayed Carbon Nanotubes for the Supercapacitors
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Cheng, Huang-Chung
口試委員:王水進許渭州鄭裕庭
口試日期:2019-10-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:超級電容鎳氧化物奈米碳管水熱法
外文關鍵詞:SupercapacitorsNickel OxideCarbon NanotubesHydrothermal Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容(Supercapacitors, Ultracapacitors, Electrochemical Capacitors)由於其優異的電氣特性,像是:充電速率短,功率密度高,可靠性高,循環壽命長和安全性高,進而成為目前最具創新性和吸引力的儲能設備。因此,它們被認為是目前最具有展望性的儲能裝置。但由於目前技術無法使它們的能量密度超越鋰離子電池,造成超級電容應用受到限制,因此提升超級電容的能量密度為目前研究的主流。
根據超級電容存儲原理,主要分成兩種形式:雙電層電容器(Electric Double Layer Capacitors)和擬電容器(Pseudocapacitors)。在新穎的超級電容應用中有一種提高整體電特性,亦可以維持循環穩定性的方式,即是將上述兩種類型結合成為混合結構的超級電容。有鑑於此,本論文希望能結合奈米碳管(Carbon Nanotubes)和氧化鎳(Nickel Oxide),以製作成混合結構之超級電容電極,來達到提升比電容值(Specific Capacitance)的目的。本論文共分為四個部分:第一部分將利用低溫水熱法成長二維結構的氫氧化鎳於奈米碳管薄膜上,第二部分利用低溫水熱氫氧化鎳混合六亞甲基四胺(Hexamethylenetetramine, HMTA, C6H12N4)製作於奈米碳管薄膜上,以形成三維結構,第三及第四部分將這兩者的最佳參數進行退火處理,以提升奈米碳管薄膜上的二維氧化鎳結構及三維氧化鎳混合HMTA結構之特性。
首先,討論不同六水合硝酸鎳濃度和不同水熱法生長時間製作的超級電容電極對於比電容值和其他電特性的影響。本研究分別利用掃描電子顯微鏡(SEM),穿隧式電子顯微鏡(TEM),能量色散X-射線光譜(EDX)和X射線光電子能譜(XPS),以分析在奈米碳管薄膜上製備的二維氫氧化鎳結構表面形態和化學鍵合。此外,透過循環伏安法(Cyclic Voltammetry Measurement),充電和放電時間(Charge and Discharge Time),電化學阻抗譜(Electrochemical Impedance Spectroscopy, EIS)和在不同的掃描速率下之測量(Different Scan-Rate Measurement)來研究在奈米碳管薄膜上合成的二維氫氧化鎳電特性。利用濃度為0.5 M之六水和硝酸鎳,進行30分鐘的水熱法處理後所獲得之二維氫氧化鎳薄膜可以使比電容值提高到912 F/g。根據SEM圖像的觀察結果,我們認為不同濃度的六水合硝酸鎳會影響的是成核點的數量,而不同的水熱法生長時間會影響的則是二維氫氧化鎳薄膜的生長大小。
第二部分中,為了可以獲得更佳的超級電容特性,本論文引入「添加HMTA來將二維氫氧化鎳的結構改變為三維」之概念,以大幅提升整體的比電容值。這部分討論了在0.1 M之六水合硝酸鎳情況下,HMTA添加的多寡和水熱法生長時間長短對於比電容值的影響。為了證明水熱法處理後會有Ni(OH)2的存在,我們對其進行SEM和XPS等料分析來對表面形貌進行探討。通過SEM圖像,我們提出了HMTA添加比例對電性能的影響。在六水合硝酸鎳與HMTA的溶液比例為20:1的情況下,將會形成更立體的三維結構,提供電解質離子進行反應的傳輸通道,使得整體比電容值大幅提高。將噴塗在鈦基板上奈米碳管薄膜浸泡到0.1 M六水合硝酸鎳與0.005 M 的HMTA混合溶液中,並以水熱法沉積30分鐘,可以將比電容值提高到1481 F/g。
在最後兩章節中,將對前兩部分最佳參數的條件進行退火處理,讓Ni(OH)2轉換為NiO。這部分也進行了一系列電特性分析,例如:CV量測,循環穩定性測試,以觀察將奈米碳管上製備的Ni(OH)2轉換為NiO是否會對電性能有所改善。此外,還進行了XPS分析,以進一步確認退火後Ni(OH)2是否成功轉變為NiO。結果所示,退火過程不僅轉換晶相,還能提高比電容值。最重要的是,退火程序亦可改善附著性,將循環穩定性提高約2至3倍,並確保在不同掃描速率下,CV曲線的形狀仍可以維持良好的氧化還原峰。經過300 °C的3小時退火處理後,原先在0.5 M的六水合硝酸鎳進行30分鐘水熱法處理的樣品之比電容值可以從912 F/g提升至1593 F/g。另一方面,經過300 °C的3小時退火處理後,原先在0.1 M 六水合硝酸鎳添加0.005 M HMTA的混合溶液中,進行30分鐘水熱法處理的樣品之比電容值可以從1481 F/g提升至1763 F/g。因此,我們認為三維的奈米碳管/氧化鎳/HMTA混合結構將是未來在超級電容應用中最有前景的混合結構電極。
Supercapacitors have become the most innovative and attractive energy storage device owing to their excellent electrical characteristics such as short charging rate, high power density, high reliability, long cycle life, and safety. Therefore, they are considered as the most promising energy storage device in the next generation. However, they are limited since their energy density has not been able to surpass that of the lithium-ion batteries, so increasing the energy density of the supercapacitor is the current research mainstream.
There are two types of supercapacitors based on storage principle: Electric Double Layer Capacitors (EDLCs) and pseudocapacitors. In novel supercapacitors application, combining the two types mentioned above to increase promote the specific capacitance and the other electrical characteristics is considered to be a potential method. Therefore, the hybrid structure electrode combined with carbon nanotubes and nickel oxide(NiO) was utilized herein. There are four parts of this thesis: the first part is using the low-temperature hydrothermal method to grow 2-D structure of nickel hydroxide (Ni(OH)2) on the CNT thin films, while the second part using the low-temperature hydrothermal Ni(OH)2 with HMTA on the CNT thin films to obtain 3-D structure. The third and fourth parts is to anneal the best parameters of the former two parts to enhance the character of the 2-D NiO on CNT thin films and the 3-D NiO with HMTA on CNT thin films.
First, the influences of specific capacitance and other electrical properties of supercapacitor electrodes synthesized with different nickel nitrate hexahydrate (Ni(NO3) · 6H2O) concentrations and different hydrothermal growth times were discussed. A series of material analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), EDS mapping and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface morphology and chemical bonding of the nickel hydroxide synthesized on the CNTFs. Besides, Cyclic Voltammetry measurement (CV), charge and discharge time, Electrochemical Impedance Spectroscopy (EIS), and different scan rate measurements were used to investigate the electrical property of the nickel hydroxide synthesized on the CNTFs. The Csp would be promoted to 912 F/g with the 2-D Ni(OH)2 thin film synthesized by hydrothermal treatment with 0.5 M Ni(NO3) · 6H2O for 30 minutes. According to the observation results of SEM images, we consider that different Ni(NO3) · 6H2O concentrations affect the number of nuclei sites, while different hydrothermal growth times affect the size of the growth.
Changing the structure of Ni(OH)2 into a 3-D structure by adding HMTA was an ideal strategy to get better supercapacitor performance, so this idea was introduced to this thesis in order to further increase the Csp performance of the CNTFs in the second part. The influences of the HMTA adding ratio and hydrothermal reaction time of hydrothermal deposition on the Csp were discussed in this part. The material analyses including SEM and XPS were used to analyze the surface morphology and prove the existence of Ni(OH)2 after hydrothermal treatment. By comparing the SEM images, we proposed the effect of the HMTA adding ratio on the electrical properties. The ratio of 20:1 solution forms better 3-D structures, providing the transportation channel for electrolyte ions to reaction, and having better specific capacitance. The specific capacitance can be promoted to 1481 F/g through 0.1 M Ni(NO3) · 6H2O + 0.005 M HMTA hydrothermal treatment for 30 minutes.
In the last two sections, the best parameter samples of the previous two parts would be annealed, and the samples will be converted from Ni(OH)2 to NiO. A series of electrical analyses including CV measurement, cycling performance were used to observe if the conversion of Ni(OH)2 to NiO synthesized on the CNTFs would improve the electrical properties. Moreover, XPS analysis was also performed to further confirm whether Ni(OH)2 was successfully converted to NiO after annealing. The results showed that the annealing process not only converts the crystal phase but also increases the specific capacitance. The specific capacitance of sample under 0.5 M Ni(NO3) · 6H2O hydrothermally treated for 30 minutes can be promoted from 912 to 1593 F/g through 300 °C annealing treatment for 3 hours. On the other hand, the specific capacitance of sample under 0.1 M Ni(NO3) · 6H2O + 0.005 M HMTA hydrothermally treated for 30 minutes can be promoted from 1481 to 1763 F/g through 300 °C annealing treatment for 3 hours. Furthermore, the annealing procedure could improve the adhesion, enhance the cycle stability by approximately 2 to 3 times and ensure that the CV profile well maintained under different scan rate. Therefore, we believed that the CNTFs/nickel oxide/HMTA hybrid structure would be a promising electrode for use in supercapacitor applications.
Chinese Abstract i
English Abstract iv
Acknowledgements vii
Contents viii
Table Lists xiii
Figure Captions xiv
Chapter 1 Introduction 1
1.1 Background of the Supercapacitors 1
1.2 The Classification of the Supercapacitors 2
1.2.1 Electric-Double-Layer Capacitors (EDLCs) 3
1.2.2 Pseudocapacitors 4
1.2.3 Hybrid Supercapacitors (HSCs) 4
1.3 The Characteristics of the Supercapacitors 5
1.3.1 Advantages of the Supercapacitors 5
1.3.2 Challenges for Supercapacitors 7
1.4 Electrode Material of the Supercapacitors 8
1.4.1 Carbon Materials 8
1.4.2 Transition Metal Oxides 9
1.4.3 Conductive Polymers 9
1.5 Overview of the Carbon Nanotubes 10
1.5.1 Properties of the CNTs 10
1.5.2 The Fabrication of the CNTFs 11
1.6 Overview of the Nickel Oxide (NiO) 14
1.6.1 Transition Metal oxides 14
1.6.2 Properties of the nickel hydroxide (Ni(OH)2) 15
1.6.3 Properties of the nickel oxide (NiO) 15
1.7 Motivation 16
1.8 Thesis Overview 18
Chapter 2 Experimental Procedures 20
2.1 Fabrication of the Supercapacitor Electrodes 20
2.1.1 Fabrication Procedures of the Carbon Nanotube Thin Films (CNTFs) 20
2.1.2 Synthesis of the Ni(OH)2 Thin Films Grown on the CNTs 20
2.1.3 Synthesis of the Ni(OH)2 Nanoflakes Grown on the CNTFs 21
2.1.4 Synthesis of the NiO Nanoparticles Grown on the CNTFs 22
2.1.5 Packaging of the Electrodes of the Supercapacitors 22
2.2 Measurement System 22
2.2.1 Material Analysis 22
2.2.2 Electrochemical performance measurement and analysis 23
Chapter 3 Results and Discussion 25
3.1 Specific Capacitance Characteristics of Nickel hydroxide (Ni(OH)2) prepared on CNTFs by Hydrothermal Method with Different Concentrations and Times 25
3.1.1 SEM Images of Ni(OH)2 Fabricated on CNTFs by Hydrothermal Method with Different Concentrations and Times 25
3.1.2 CV Characteristics of Nickel hydroxide (Ni(OH)2) Fabricated on CNTFs by Hydrothermal Method with Different Concentrations and Times 26
3.1.3 TEM & EDX Images of Nickel Hydroxide (Ni(OH)2) Fabricated on CNTFs by Hydrothermal Method with 0.5 M for 30 minutes 28
3.1.4 X-ray Photoelectron Spectroscopy (XPS) Analyses of Nickel Hydroxide (Ni(OH)2) Fabricated on CNTFs with 0.5 M for 30 Minutes 28
3.1.5 Galvanostatic Charge/Discharge (GCD) Curves of Nickel hydroxide (Ni(OH)2) Fabricated on CNTFs by Hydrothermal Method with 0.5 M 29
3.1.6 Electrochemistry Impedance Spectroscopy (EIS) of Nickel hydroxide (Ni(OH)2) Fabricated on CNTFs by Hydrothermal Method with 0.5 M 29
3.1.7 Different Scan-Rate Analysis of Nickel hydroxide (Ni(OH)2) Fabricated on CNTFs by Hydrothermal Method with 0.5 M for 30 Minutes 30
3.1.8 Summery 30
3.2 Specific Capacitance Characteristics of Nickel hydroxide (Ni(OH)2) prepared on CNTFs by 0.1 M Hydrothermal Method for Different Times and Adding Different Ratios of HMTA 31
3.2.1 SEM Images of Ni(OH)2 prepared on CNTFs by 0.1 M Hydrothermal Method for Different Times and Adding Different Ratio of HMTA 31
3.2.2 CV Characteristics of Ni(OH)2 prepared on CNTFs by 0.1 M Hydrothermal Method for Different Times and Adding Different Ratio of HMTA 32
3.2.3 X-ray Photoelectron Spectroscopy (XPS) Analyses of Ni(OH)2 prepared on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 minutes 34
3.2.4 Galvanostatic Charge/Discharge (GCD) Curves of Ni(OH)2 prepared on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 minutes 34
3.2.5 Electrochemistry Impedance Spectroscopy (EIS) of Ni(OH)2 prepared on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for Different minutes 35
3.2.6 Different Scan-Rate Analysis of Ni(OH)2 prepared on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 minutes 35
3.2.7 Summery 36
3.3 Specific Capacitance Characteristics of Nickel Oxide (NiO) prepared on CNTFs by 0.5 M Hydrothermal Method for 30 Minutes and Annealed at 300 °C for Different Times 37
3.3.1 CV Characteristics of NiO Synthesized on CNTFs by 0.5 M Hydrothermal Treatment for 30 Minutes and Annealed for Different Times 37
3.3.2 Cycling Performance of NiO Synthesized on CNTFs by 0.5 M Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 38
3.3.3 X-ray Photoelectron Spectroscopy (XPS) Analyses of NiO Synthesized on CNTFs by 0.5 M Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 38
3.3.4 Different Scan-Rate Analysis of NiO Synthesized on CNTFs by 0.5 M Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 39
3.4 Specific Capacitance Characteristics of Nickel Oxide (NiO) prepared on CNTFs by 0.1 M + 0.005M HMTA Hydrothermal Method for 30 Minutes and Annealed at 300 °C for Different Times 40
3.4.1 CV Characteristics of NiO Synthesized on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 Minutes and Annealed for Different Times 40
3.4.2 Cycling Performance of NiO Synthesized on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 41
3.4.3 X-ray Photoelectron Spectroscopy (XPS) Analyses of NiO Synthesized on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 41
3.4.4 Different Scan-Rate Analysis of NiO Synthesized on CNTFs by 0.1 M + 0.005 M HMTA Hydrothermal Treatment for 30 Minutes and Annealed for 3 Hours 42
Chapter 4 Conclusions and Future Prospects 43
4.1 Summary and Conclusions 43
4.2 Future Prospects 44
References 46
Figures 57
Vita 85
[1] P.Simon andY.Gogotsi, “Materials for Electrochemical Capacitors,” Nat. Mater., vol. 7, pp. 845–854, 2008.
[2] B. K.Kim, S.Sy, A.Yu, andJ.Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion,” Handb. Clean Energy Syst., pp. 1–25, 2015.
[3] L. L.Zhang andX. S.Zhao, “Carbon-based materials as supercapacitor electrodes,” Chem. Soc. Rev., vol. 38, no. 9, pp. 2520–2531, 2009.
[4] W.Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., &Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater., vol. 4, pp. 366–377, 2005.
[5] J.Schindall, “The Charge of the Ultracapacitors,” IEEE Spectr., pp. 42–46, 2007.
[6] B. E.Conway, “Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage,” J. Electrochem. Soc., vol. 138, pp. 1539–1548, 1991.
[7] Samantara, A.K, andS.Ratha, Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective. Springer, 2017.
[8] C. C.Hu, K. H.Chang, M. C.Lin, andY. T.Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett., vol. 6, no. 12, pp. 2690–2695, 2006.
[9] F.Wang, S.Xiao, Y.Hou, C.Hu, L.Liu, andY.Wu, “Electrode materials for aqueous asymmetric supercapacitors,” RSC Adv., vol. 3, no. 32, pp. 13059–13084, 2013.
[10] X.Li andB.Wei, “Supercapacitors based on nanostructured carbon,” Nano Energy, vol. 2, no. 2, pp. 159–173, 2013.
[11] T.Chen andL.Dai, “Flexible supercapacitors based on carbon nanomaterials,” J. Mater. Chem. A, vol. 2, no. 28, pp. 10756–10775, 2014.
[12] S.Sarangapani, B.V.Tilak, andC.-P.Chen, “Materials for Electrochemical Capacitors,” J. Electrochem. Soc., vol. 143, no. 11, pp. 3791–3799, 1996.
[13] B. E.Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.” Springer US, 2013.
[14] Q.Lu, J. G.Chen, andJ. Q.Xiao, “Nanostructured electrodes for high-performance pseudocapacitors,” Angew. Chemie - Int. Ed., vol. 52, no. 7, pp. 1882–1889, 2013.
[15] G.Wang, L.Zhang, andJ.Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012.
[16] J. W.B.E. Conway, V. Birss, “The role and utilization of pseudocapacitance for energy storage by supercapacitors,” J. Power Sources, vol. 66, pp. 1–14, 1997.
[17] T.Liu, W. G.Pell, andB. E.Conway, “Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes,” Electrochim. Acta, vol. 42, no. 23–24, pp. 3541–3552, 1997.
[18] A. D.Jagadale, V. S.Kumbhar, R. N.Bulakhe, andC. D.Lokhande, “Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes,” Energy, vol. 64, pp. 234–241, 2014.
[19] A. G.Pandolfo andA. F.Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources, vol. 157, no. 1, pp. 11–27, 2006.
[20] B. E.Conway, “Electrochemical supercapacitors: scientific fundamentals and technological applications.” Kluwer academic/Plenum, New York, 1999.
[21] A. K.Shukla, S.Sampath, andK.Vijayamohanan, “Electrochemical supercapacitors: Energy storage beyond batteries,” Curr. Sci., vol. 79, no. 12, pp. 1656–1661, 2000.
[22] C.Liu, Z.Yu, D.Neff, A.Zhamu, andB. Z.Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, no. 12, pp. 4863–4868, 2010.
[23] J. R. Miller and A. F. Burke, “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications,” Electrochem. Soc. Interface, vol. 17, no. 1, pp. 53–57, 2008.
[24] H.Chen, T. N.Cong, W.Yang, C.Tan, Y.Li, andY.Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, 2009.
[25] and Y. C.Liangbing Hu, Jang Wook Choi, Yuan Yang, Sangmoo Jeong, Fabio La Mantia, Li-Feng Cui, “Highly conductive paper for energy-storage devices,” Proc. Natl. Acad. Sci., vol. 106, pp. 21490–21494, 2009.
[26] S. R.Sivakkumar, J. M.Ko, D. Y.Kim, B. C.Kim, andG. G.Wallace, “Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors,” Electrochim. Acta, vol. 52, no. 25, pp. 7377–7385, 2007.
[27] K.Levine, “Synthesis, Characterization and properties of polypyrrole/Polyimide composites,” 2002.
[28] A.Rudge, J.Davey, I.Raistrick, S.Gottesfeld, andJ. P.Ferraris, “Conducting polymers as active materials in electrochemical capacitors,” J. Power Sources, vol. 47, no. 1–2, pp. 89–107, 1994.
[29] Iijima S, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. November, pp. 56–58, 1991.
[30] M. S.Dresselhaus, G.Dresselhaus, andR.Saito, “Physics of carbon nanotubes,” Carbon N. Y., vol. 33, no. 7, pp. 883–891, 1995.
[31] E. G.Gamaly andT. W.Ebbesen, “Mechanism of carbon nanotube formation in the arc discharge,” Phys. Rev. B, vol. 52, no. 3, pp. 2083–2089, 1995.
[32] R. H.Baughman, A. A.Zakhidov, andW. A.DeHeer, “Carbon nanotubes - The route toward applications,” Science (80-. )., vol. 297, no. 5582, pp. 787–792, 2002.
[33] C.Wang, J.Zhang, K.Ryu, A.Badmaev, L. G.DeArco, andC.Zhou, “Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications,” Nano Lett., vol. 9, no. 12, pp. 4285–4291, 2009.
[34] M. A.Meitl et al., “Solution casting and transfer printing single-walled carbon nanotube films,” Nano Lett., vol. 4, no. 9, pp. 1643–1647, 2004.
[35] R. H.Schmidt, I. A.Kinloch, A. N.Burgess, andA. H.Windle, “The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films,” Langmuir, vol. 23, no. 10, pp. 5707–5712, 2007.
[36] J.Wang andM.Musameh, “Carbon nanotube screen-printed electrochemical sensors,” Analyst, vol. 129, no. 1, pp. 1–2, 2004.
[37] F. G.Zeng, C. C.Zhu, W.Liu, andX.Liu, “The fabrication and operation of fully printed Carbon nanotube field emission displays,” Microelectronics J., vol. 37, no. 6, pp. 495–499, 2006.
[38] W. B.Choi et al., “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett., vol. 78, no. 11, pp. 1547–1549, 2001.
[39] E.Ramasamy, W. J.Lee, D. Y.Lee, andJ. S.Song, “Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells,” Electrochem. commun., vol. 10, no. 7, pp. 1087–1089, 2008.
[40] R. C.Tenent et al., “UItrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying,” Adv. Mater., vol. 21, no. 31, pp. 3210–3216, 2009.
[41] Y. S.Chien et al., “The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method,” J. Nanosci. Nanotechnol., vol. 12, no. 7, pp. 5423–5428, 2012.
[42] C.Du, J.Yeh, andN.Pan, “Carbon nanotube thin films with ordered structures,” J. Mater. Chem., vol. 15, no. 5, pp. 548–550, 2005.
[43] C. D.Lokhande, D. P.Dubal, andO. S.Joo, “Metal oxide thin film based supercapacitors,” Curr. Appl. Phys., vol. 11, no. 3, pp. 255–270, 2011.
[44] X. C.Dong et al., “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano, vol. 6, no. 4, pp. 3206–3213, 2012.
[45] R. B.Rakhi, W.Chen, D.Cha, andH. N.Alshareef, “High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes,” J. Mater. Chem., vol. 21, no. 40, pp. 16197–16204, 2011.
[46] X.Cao et al., “Preparation of novel 3D graphene networks for supercapacitor applications,” Small, vol. 7, no. 22, pp. 3163–3168, 2011.
[47] X.Huang, B.Sun, S.Chen, andG.Wang, “Self-assembling synthesis of free-standing nanoporous graphene-transition- metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors,” Chem. - An Asian J., vol. 9, no. 1, pp. 206–211, 2014.
[48] K.Liang, X.Tang, andW.Hu, “High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode,” J. Mater. Chem., vol. 22, no. 22, pp. 11062–11067, 2012.
[49] X.Ma, J.Liu, C.Liang, X.Gong, andR.Che, “A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH)2/GO/CNTs composite with excellent supercapacitor performance,” J. Mater. Chem. A, vol. 2, no. 32, pp. 12692–12696, 2014.
[50] B.Ren, M.Fan, Q.Liu, J.Wang, D.Song, andX.Bai, “Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode,” Electrochim. Acta, vol. 92, pp. 197–204, 2013.
[51] P.Lin et al., “The nickel oxide/CNT composites with high capacitance for supercapacitor,” J. Electrochem. Soc., vol. 157, no. 7, pp. 818–823, 2010.
[52] M.Yao, Z.Hu, Y.Liu, P.Liu, Z.Ai, andO.Rudolf, “3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes,” J. Alloys Compd., vol. 648, pp. 414–418, 2015.
[53] J.Zhu et al., “CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors,” J. Solid State Chem., vol. 184, pp. 578–583, 2011.
[54] J. W.Lee, T.Ahn, J. H.Kim, J. M.Ko, andJ. D.Kim, “Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors,” Electrochim. Acta, vol. 56, no. 13, pp. 4849–4857, 2011.
[55] B.Vidhyadharan et al., “High performance supercapacitor electrodes from electrospun nickel oxide nanowires,” J. Alloys Compd., vol. 610, pp. 143–150, 2014.
[56] S.Zhu et al., “In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors,” Mater. Lett., vol. 161, pp. 731–734, 2015.
[57] W.Yu, X.Jiang, S.Ding, andB. Q.Li, “Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors,” J. Power Sources, vol. 256, pp. 440–448, 2014.
[58] Y.Wang, Y.Song, andY.Xia, “Electrochemical capacitors: Mechanism, materials, systems, characterization and applications,” Chem. Soc. Rev., vol. 45, no. 21, pp. 5925–5950, 2016.
[59] and K. M.A. K. Shukla, “Electrochemical Power Sources,” Electron. Power, vol. 6, no. 8, pp. 72–81, 2003.
[60] M. F.Yu, O.Lourie, M. J.Dyer, K.Moloni, T. F.Kelly, andR. S.Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science (80-. )., vol. 287, no. 5453, pp. 637–640, 2000.
[61] S. I.Kim, J. S.Lee, H. J.Ahn, H. K.Song, andJ. H.Jang, “Facile route to an efficient nio supercapacitor with a three-dimensional nanonetwork morphology,” ACS Appl. Mater. Interfaces, vol. 5, no. 5, pp. 1596–1603, 2013.
[62] L.Li, G.Xia, W.Yu, A.Zhang, K.Lu, andS.Wang, “Low-energy hydrothermal fabrication of α-Ni(OH)2 nanosheet arrays as efficient electrodes for sustainable supercapacitors,” Sustain. Mater. Technol., vol. 20, p. e00085, 2018.
[63] Y.Zhang et al., “In situ preparation of flower-like α-Ni(OH)2 and NiO from nickel formate with excellent capacitive properties as electrode materials for supercapacitors,” Mater. Chem. Phys., vol. 151, pp. 160–166, 2015.
[64] X.Yan, X.Tong, J.Wang, C.Gong, M.Zhang, andL.Liang, “Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application,” J. Alloys Compd., vol. 593, pp. 184–189, 2014.
[65] P. E.Lokhande andU. S.Chavan, “Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications,” Mater. Lett., vol. 218, pp. 225–228, 2018.
[66] J. W.Lee, T.Ahn, D.Soundararajan, J. M.Ko, andJ. D.Kim, “Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior,” Chem. Commun., vol. 47, no. 22, pp. 6305–6307, 2011.
[67] M. A.Peck andM. A.Langell, “Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS,” Chem. Mater., vol. 24, no. 23, pp. 4483–4490, 2012.
[68] G.Cai et al., “Electrochromo-supercapacitor based on direct growth of NiO nanoparticles,” Nano Energy, vol. 12, pp. 258–267, 2015.
[69] N.Duraisamy, A.Numan, S. O.Fatin, K.Ramesh, andS.Ramesh, “Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application,” J. Colloid Interface Sci., vol. 471, pp. 136–144, 2016.
[70] J.Lv, Z.Wang, andH.Miura, “Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application,” Solid State Commun., vol. 269, no. October 2017, pp. 45–49, 2018.
[71] X.Hui, L.Qian, G.Harris, T.Wang, andJ.Che, “Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition,” Mater. Des., vol. 109, pp. 242–250, 2016.
[72] S.Lv, C.Wang, andS.Xing, “Hexamethylenetetramine-induced synthesis of hierarchical NiO nanostructures on nickel foam and their electrochemical properties,” J. Alloys Compd., vol. 603, pp. 190–196, 2014.
[73] A.Xiao, S.Zhou, C.Zuo, Y.Zhuan, andX.Ding, “Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage,” Mater. Res. Bull., vol. 61, pp. 54–57, 2015.
[74] J.Wang et al., “Nanosheet-assembled hollow NiO ball-flower for high-performance supercapacitor,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8020–8026, 2016.
[75] L.Jinlong, Z.Wang, L.Tongxiang, Y.Meng, K.Suzuki, andH.Miura, “The effect of graphene coated nickel foam on the microstructures of NiO and their supercapacitor performance,” J. Electroanal. Chem., vol. 799, no. February, pp. 595–601, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊