|
[1] openai [online] Available: https://openai.com/blog/ai-and-compute/ [2] S. Yu, “Neuro-inspired computing with emerging nonvolatile memory,” Proc. IEEE, vol. 106, no. 2, pp. 260-285, Feb. 2018. [3] Wikipedia, “Human brain” [Online]. Available: https://en.wikipedia.org/wiki/Human_brain. [4] M. Kim, P. Smaragdis, “Bitwise Neural Networks,”arXiv:1601.06071v1, 2016. [5] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” arXiv:1603.05279v4, 2016. [6] M. Courbariaux, Y. Bengio, and J-P David, “BinaryConnect: Training Deep Neural Networks with binary weights during propagations,” arXiv:1511.00363, 2015. [7] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, “Recent progress in resistive random access memories: materials switching mechanisms and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014. [8] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, S. M. Sze, “Resistance random access memory” Mater. Today, vol. 19, no. 5, pp. 254-264, Jun. 2016. [9] C.-C. Chang, P.-C. Chen, B. Hudec, P. –T. Liu, T.-H. Hou, “Interchangeable Hebbian and Anti-Hebbian STDP Applied to Supervised Learning in Spiking Neural Network,” in IEDM Tech. Dig., pp. 15.5.1-15.5.4., Dec. 2018. [10] Wikipedia, “X-ray absorption spectroscopy” [Online]. Available: https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy. [11] NSRRC course lecture. [12] I.-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu and T.-H. Hou, “3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation,” in IEDM Tech. Dig., pp. 28.5.1-28.5.4, Dec. 2014. [13] G. H. Buh, I. Hwang, B.-H. Park, “Time-dependent electroforming in NiO resistive switching devices,” Appl. Phys. Lett., vol. 95, 142101, Oct. 2009. [14] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Panciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” in IEDM Tech. Dig., pp. 775–778, 2007. [15] B. Gao, S. Yu, N. Xu, L.-F. Liu, B. Sun, X.-Y. Liu, R.-Q. Han, J.-F. Kang, B. Yu, Y.-Y. Wang, “Oxide-based RRAM switching mechanism: A new ion-transport-recombination model,” in IEDM Tech. Dig., 2008, pp. 563–566. [16] S. Yu and H.-S. P. Wong, “A phenomenological model for the reset mechanism of metal oxide RRAM,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1455–1457, 2010. [17] W.-C. Luo, J.-C. Liu, H.-T. Feng, Y.-C. Lin, J.-J. Huang, K.-L. Lin and T.-H. Hou, “RRAM set speed-disturb dilemma and rapid statistical prediction methodology,” in IEDM Tech. Dig., 2012, pp. 215–218. [18] W.-C. Luo, J.-C. Liu, Y.-C. Lin, C.-L. Lo, J.-J. Huang, K.-L. Lin and T.-H. Hou, “Statistical model and rapid prediction of RRAM SET speed-disturb dilemma,” IEEE Trans. Electron Devices, vol. 60, pp. 3760–3766, 2013. [19] J.-C. Liu, T.-Y. Wu, T.-H. Hou, “Optimizing incremental step pulse programming for RRAM through device–circuit co-design,” IEEE Trans Circuits Syst II, 65, 617–621,2018. [20] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., 99, 102903, 2011. [21] T. Shimada, T. Kitamura, “Multi‐physics properties in ferroelectric nanowires and related structures from first‐principles,” in Nanowires, P. Prete Eds., Croatia: INTECH, 2010. [22] C. Liu, F. Liu, Q. Luo, P. Huang, X.-X. Xu, H.-B. Lv, Y.-D. Zhao, X.-Y. Liu and J.-F. Kang, “Role of Oxygen Vacancies in Electric Field Cycling Behaviors of Ferroelectric Hafnium Oxide,” in IEDM Tech. Dig., pp.16.4.1-16.4.4, 2018. [23] K. Takeuchi, A. Chen, “Ferroelectric FET Memory,” in Emerging Nanoelectronic Devices, A. Chen, J. Hutchby, V. Zhirnow, G. Bourianoff, Eds West Sussex: John Wiley and Sons Ltd, 2015, pp.111, 2015. [24] T. Mikolajick, S. Slesazeck, M.-H. Park, U. Schroeder, “Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors,” MRS Bull., vol. 43, no. 5, pp. 340-346, May 2018. [25] S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, M. Saitoh, “First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property,” in Symp. VLSI Tech. Dig., 2016. [26] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications” Appl. Phys. Lett., 11, 112901, 2011. [27] M.-H. Park, H.-J. Kim, Y.-J. Kim, T. Moon, C.-S. Hwang, “The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity,” Appl. Phys. Lett., 104, 072901, 2014. [28] X. Zhang, L. Chen, Q.-Q. Sun, L.-H. Wang, P. Zhou, L. Hong, P.-F. Wang, S.-J. Ding, David W. Zhang, “Inductive crystallization effect of atomic-layer-deposited Hf0.5Zr0.5O2 films for ferroelectric application,” Nanoscale Res. Lett., 10, 25, 2015. [29] Z. Fan, J. Xiao, J. Wang, L. Zhang, J. Deng, Z. Liu, Z Dong, J. Wang, and J. Chen, “Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films,” Appl. Phys. Lett., 108, 23, 232905, 2016. [30] F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yáñez, M. A. Gauthier, and A. Ruedige, “Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure,” Appl. Phys. Lett., 110, 9, 093106, 2017. [31] L. Chen, T.-Y. Wang, Y.-W. Dai, M.-Y. Cha, H. Zhu, Q.-Q. Sun, S.-J. Ding, P. Zhou, L. Chua, D. W. Zhang, “Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications,” Nanoscale, 10,15826–15833,2018. [32] Y. Goh, S. Jeon, “The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2,” Nanotechnology, vol. 29, no. 33, Jun. 2018. [33] Y.C. Lin, F. McGuire “Realizing ferroelectric Hf0.5Zr0.5O2 with elemental capping layers,” J. Vac. Sci. Technol. B Microelectron. Process. Phenom., vol. 36, 011204, 2018. [34] B. Max, M. Hoffmann, S. Slesazeck, T. Mikolajick, “Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric Hf0.5Zr0.5O2/Al2O3 Capacitor Stacks”, in ESSDERC,2018. [35] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, M. Liu, “Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1207-1210, Jun. 2018. [36] L. Esaki, R. B. Laibowitz, and P. J. Stiles, “IBM Technical Disclosure Bulletin” 13, 2161, 1971. [37] M. Kobayashi, Y. Taguwa, F. Mo, T. Saraya, T. Hiramoto, “Ferroelectric HfO2 tunnel junction memory with high TER and multi-level operation featuring metal replacement process,” IEEE J. Electron Dev. Soc., vol. 7, pp. 134–139, 2019. [38] R. Anderson: “Germanium-Gallium Arsenide Heterojunctions [Letter to the Editor],” IBM J. Res. Dev., 4, 283,1960. [39] M. Pešić, F.-P.-G. Fengler, L. Larche, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, “Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors,” Adv. Funct. Mater., 26.25, 4601-4612, 2016. [40] M.H. Park, Y.-H. Lee, H.-J. Kim, Y.- J. Kim, T. Moon, K.-D. Kim, S.-D. Hyun, T. Mikolajick, U. Schroeder, C.-S. Hwang, “Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films,” Nanoscale, vol. 10, 716-725, 2018. [41] “Practical Electron Microscopy and Database - Ferroelectric Dielectric Hysteresis & Hysteresis Loop” online book, [online] Available: http://www.globalsino.com/EM/page1804.html [42] Scott, J. F. “Ferroelectrics go bananas.” Journal of Physics: Condensed Matter, 20.2, 021001, 2007. [43] B. Dickens, E. Balizer, A. S. DeReggi, S. C. Roth, “Hysteresis measurements of remanent polarization and coercive field in polymers,” J. Appl. Phys., vol. 72, pp. 4258–4264, 1992. [44] S. Bernacki, E. Balizer, A. S. DeReggi, and S. C. Roth, “Standardized ferroelectric capacitor test methodology for nonvolatile semiconductor memory applications,” Integrated Ferroelectrics, 3.2, 97-112, 1993. [45] B.T. Lin, Y.-W. Lu, J. Shieh, M.-J. Chen, “Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing,” J. European Ceramic Soc., 37.3, 1135-1139, 2017 [46] T. Kim, G. Baek, S. Yang, J.-Y. Yang, K.-S. Yoon, S.-G. Kim, J.-Y. Lee, H.-S. Im, J.-P. Hong, “Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching,” Scientific reports, 8.1: 8532, 2018 [47] A. Chanthbouala, V. Garcia, R. O. Cherifi, K.Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy, J. Grollier, “A ferroelectric memristor,” Nature Mater., vol. 11, pp. 860–864, 2012. [48] R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi, “In-memory reinforcement learning with moderately stochastic conductance switching of ferroelectric tunnel junctions,” in Symp. VLSI Tech. Dig., 2019, pp. T22–23. [49] A. Chanthbouala, A. Crassous, V.Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, A. Barthélémy, “Solid-state memories based on ferroelectric tunnel junctions,” Nature Nanotech., vol. 7, pp. 101–104, 2012. [50] D. J. Kim, H. Lu, S. Ryu, C.-W. Bark, C.-B. Eom, E. Y. Tsymbal, A. Gruverman, “Ferroelectric tunnel memristor,” Nano Lett., vol. 12, pp. 5697–5702, 2012. [51] H. Yamada, A. T. Fukuchi, M. Kobayashi, Y. Toyosaki, H. Kumingashira, A. Sawa, “Strong surface-termination effect on electroresistance in ferroelectric tunnel junctions,” Adv. Funct. Mater., vol. 25, pp. 2708– 2714, 2015. [52] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, T. Hiramoto, “Ferroelectric HfO2 tunnel junction memory with high TER and multi-level operation featuring metal replacement process,” IEEE J. Electron Dev. Soc., vol. 7, pp. 134–139, 2019. [53] Z. Fan, J. Xiao, J. Wang, L. Zhang, J. Deng, Z. Liu, Z. Dong, J. Wang, and J. Chen, “Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films,” Appl. Phys. Lett., vol. 108, 232905, 2016. [54] H.-H. Huang, T.-Y. Wu, Y.-H. Chu, M.-H. Wu, C.-H. Hsu, H.-Y. Lee, S.-S. Sheu, W.-C. Lo, T.-H. Hou, “A comprehensive modeling framework for ferroelectric tunnel junctions,” in IEDM Tech. Dig., 2019 [55] C.-C.Chang, J.-C.Liu, Y.-L.Shen, T.Chou, P.-C.Chen, I-T.Wang, C.-C.Su, M.-H.Wu, B.Hudec, C.-C.Chang, C.-M.Tsai, T.-S. Chang, H.-S. Philip Wong, T.-H.Hou, “Challenges and opportunities toward online training acceleration using RRAM-based hardware neural network,” in IEDM Tech. Dig., 2017, pp. 278–281. [56] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H. Wang, W.-C. Wei, T.-W. Chang, T.-Ch. Chang, T.-Y. Huang, H.-Y. Kao, S.-Y. Wei, Y.-C. Chiu, C.-Y. Lee, C.-C. Lo, Y.-C. King, C.-J. Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, M.-F. Chang., “A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel MAC computing time for CNN based AI edge processors,” in Proc. ISSCC Tech. Dig., 2019, pp. 388–389. [57] L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar, D.-J. Wouters, Y.-Y. Chen, M. Komura, F. De Stefano, V.-V. Afanas’ev, M. Jurczak, “Understanding of the intrinsic characteristics and memory trade-offs of sub-μA filamentary RRAM operation,” in Sym. on VLSI Technology, 2013, pp. 162–163. [58] C. Alessandri, P. Pandey, A. Abusleme, A. Seabaugh, “Switching Dynamics of Ferroelectric Zr-Doped HfO2,” IEEE Electron Device Letters, vol. 39, no. 11, pp. 1780-1783, Nov. 2018. [59] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Proc. 25th Int. Conf. Neural Inf. Process. Syst., pp. 1106-1114, 2012. [60] T Gokmen, O. M. Onen, W. Haensch., “Training deep convolutional neural networks with resistive cross-point devices,” in Neuroscience 11, 538, 2017. [61] X.C. Peng, R. Liu, S. Yu, “Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on RRAM Based Processing-In-Memory Architecture,” in ISCAS, 2019. [62] C.-C. Chang, M.-H. Huang, J.-W. Lin, C.-H. Li, V. Parmar, J.-H. Wei, S.-S. Sheu, M. Suri, T.-S. Chang, T.-H. Hou, “NV-BNN: An accurate deep convolutional neural network based on binary STT-MRAM for adaptive AI edge,” in DAC Tech. Dig., 2019. [63] H. Kim, Y. Kim, J.-J. Kim, “In-memory batch-normalization for resistive memory based binary neural network hardware,” in ASPDAC Tech. Dig., 2019, pp. 645–650.
|