跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐浩樺
研究生(外文):Hsu, Hao-Hua
論文名稱:濺鍍成長二碲化鉬之快速固相結晶及缺陷工程
論文名稱(外文):Rapid Thermal Recrystallization and Defect Modulation of Sputtered MoTe2
指導教授:侯拓宏
指導教授(外文):Hou, Tuo-Hung
口試委員:吳文偉侯拓宏李耀仁
口試委員(外文):Wu, Wen-WeiHou, Tuo-HungLee, Yao-Jen
口試日期:2019-10-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:94
中文關鍵詞:二碲化鉬濺鍍快速熱退火固相結晶
外文關鍵詞:MoTe2SputterRapid thermal annealingsolid phase crystallization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積體電路製程技術發展半個世紀以來,電晶體的發展始終依循著摩爾定律,如今年備受矚目的產品—iPhone 11 Pro中所搭載的A13 Bionic晶片便是採用台積電第二代EUV 7奈米製程。然而,元件微縮已經接近盡頭,為了持續推進元件特性並增加閘極的控制能力及降低漏電流,開發僅有原子層厚的通道且維持足夠的操作速度是下一代新穎電晶體的研究方向之一。在環境中能穩定存在的單原子層石墨烯被成功展示之後,開啟了大量二維材料於電晶體的研究,而在廣泛的二維材料中,過渡金屬硫屬化物(TMDs)具有適當的能隙大小及優異的載子遷移率,是下一代電晶體通道材料中極具潛力的代表。
在第六族過渡金屬硫屬化物中,二碲化鉬具有許多吸引人且有用的特性,例如擁有較高的載子遷移率(~2500 cm2/Vs)、較強的自旋軌道耦合及近似矽的能隙值,使得二碲化鉬有很高的潛力應用在場效應電晶體、自旋電子學及光電子元件。同時,二碲化鉬具有兩種相對穩定的晶格結構—半導體態的2H及半金屬態的1T’,使得低接觸阻抗的二碲化鉬異質結構元件得以實現。然而,較小的2H及1T’的基態能量差讓二碲化鉬薄膜的特定晶相合成有一定的難度。在此研究中,我們以濺鍍法沉積大面積的二碲化鉬,藉由後續熱退火控制二碲化鉬的結晶,這個製程不需要複雜的化學反應,且可以透過不同的熱製程形成特定晶相的二碲化鉬。
本篇論文主要探討不同熱退火製程對於二碲化鉬結晶相的影響,我們比較了傳統爐管及快速熱退火製程的結果,同時也深入分析退火溫度與薄膜表面形貌的關係:隨著退火溫度升高,2H二碲化鉬會逐漸形成鋸齒型邊界(Zig-zag)的六角形。根據物性及光學分析的結果表明,適當的熱退火製程可以合成出高品質的2H二碲化鉬,並利用以上兩種熱退火製程來執行二段式退火,可以得到較大的開關電流比例以及較小的次臨界擺幅的電晶體特性。除此之外,我們也探討電漿處理對於二碲化鉬的結晶相及電晶體傳輸行為的影響,利用缺陷的產生改變不同結晶相的穩定性,並成功控制電晶體傳輸載子的極性,形成具有雙極性的2H二碲化鉬電晶體,實驗結果也用第一原理計算相互佐證。本篇論文提出的方法可以在未來應用於異質結構元件和互補式金屬氧化物半導體,達到具有低接觸阻抗與極性控制,利用二碲化鉬的特殊材料性質實現單一二維材料的互補式金屬氧化物半導體電路。
The integrated circuit technology has evolved for half of a century, and Moore’s Law is still the golden rule of scaling followed by advanced transistors. For example, the novel products of the A13 Bionic chip in the iPhone 11 Pro was fabricated by TSMC's second-generation 7-nm EUV process. However, the Si-based device miniaturization is approaching its end. To keep pursuing higher performance, better gate control, and lower leakage current, developing a channel with atomic thickness while maintaining sufficient operating speed is one of the research directions of the next-generation nanoelectronics. After successfully demonstrating air-stable monolayer graphene, a considerable amount of two-dimensional transistors have been extensively studied. Among various two-dimensional materials, transition metal dichalcogenides (TMDs) possess the moderate bandgap and extremely high carrier mobility, showing high potential as a candidate for the sub-5nm channel material.
Among the group-VI TMDs, Molybdenum ditelluride (MoTe2) shows numerous attractive and useful properties, such as high carrier mobility (~2500 cm2/Vs), strong spin-orbit coupling, and the desired band gap value close to Si. It has two relatively stable lattice structures - 2H and 1T', which possess semiconductor and semi-metal properties, respectively, making MoTe2 suitable for heterophase homojunction devices for reducing high contact resistance. However, little difference in the ground-state energy of two stable phases also makes the synthesis of MoTe2 with a specific phase more difficult. In this study, we deposit amorphous MoTe2 by sputtering and perform solid-phase recrystallization by using a post-annealing process. This method achieves large-area deposition without complex chemical reactions, and it is capable of forming both the 2H-phase and 1T’-phase MoTe2 via tuning the post-annealing process.
This thesis mainly discusses the influence of the post-annealing on MoTe2. Compared with the conventional furnace annealing, we applied the rapid thermal annealing (RTA) method to recrystallize the as-deposited MoTe2. Furthermore, we analyze the relation between the temperature and the shape of MoTe2 domain: 2H-phase MoTe2 gradually becomes a zig-zag-dominated hexagon at higher temperatures. This RTA-synthesized 2H-phase MoTe2 shows high crystalline quality verified by various optical and physical analysis. In addition, we utilized two-step annealing (RTA + furnace annealing) to achieve improved device characteristics with a larger on/off current ratio and lower subthreshold swing. Finally, we modulated the crystalline phase and carrier polarity of MoTe2 by plasma treatment. The stability of crystalline MoTe2 is modified by defect generation, and ambipolar characteristics of the 2H-phase MoTe2 transistor are obtained. The first-principle calculation also supported the results. Our proposed methods can be applied to construct heterophase homojunction devices and CMOS circuits. Therefore, it has the potential for realizing all-MoTe2-based homojunction CMOS circuits in the future.
目錄
摘要 i
ABSTRACT iii
致謝 v
Contents vi
Figure Caption VIII
Table List XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Challenges of TMDs Devices 4
1.3 Synthesis Methods of TMDs Thin Film 7
1.4 Motivation 11
Chapter 2 Rapid Thermal Recrystallization of Sputtered-MoTe2 12
2.1 Introduction 12
2.2 Experimental Procedure 14
2.2.1 Rapid Thermal Annealing 14
2.3 Phase Transition during Rapid Thermal Annealing 15
2.3.1 Concepts of 2H-, 1T-, and 1T’- Phase MoTe2 15
2.3.2 Raman Spectroscopy and Phase Transition of MoTe2 17
2.3.3 Physical Analysis 21
2.4 Growth Barrier Extraction of MoTe2 24
2.4.1 Equilibrium Shape of 2H-Phase MoTe2 24
2.4.2 Growth Barrier Extraction of MoTe2 27
2.4.3 Ab-initio Study of Zig-zag Edge and Armchair Edge in MoTe2 29
2.5 Summary 31
Chapter 3 Furnace Annealing and Two-Step Annealing of Sputtered-MoTe2 32
3.1 Introduction 32
3.2 Experimental Procedure 34
3.2.1 Conventional Furnace Annealing 34
3.2.2 Back-gate Devices with Top Contact 34
3.2.3 Back-gate Devices with Bottom Contact 35
3.3 Solid Phase Crystallization 36
3.3.1 Dynamic Phase Evolution during Solid Phase Crystallization and Phase Diagram 36
3.3.2 Physical Analysis 40
3.3.3 Basic Electrical Characteristics 42
3.4 Two-Step Annealing 45
3.5 Cracks Effect on Sputtered-MoTe2 49
3.6 Summary 52
Chapter 4 Tunable Electrical Characterization of MoTe2 Devices 53
4.1 Introduction 53
4.2 Experimental Procedure 56
4.3 Ab-initio Study of Defect Engineering 57
4.4 Plasma Treatment on MoTe2 60
4.4.1 Treatment on As-deposited MoTe2 60
4.4.2 Treatment on Crystalline MoTe2 and Devices 62
4.5 Summary 68
Chapter 5 Conclusion and Future Work 68
5.1 Conclusion 68
5.2 Future work 70
Reference 72
Vita 77
[1] W. contributors. Moore's law.
[2] P. Francis, A. Terao, D. Flandre, and F. Van de Wiele, "Moderate Inversion Model of Ultrathin Double Gate nMOS/SOI Transistors," Solid State Electron., vol. 38, pp. 171-176, 1995.
[3] J. T. Park, and J. P. Colinge, "Multiple Gate SOI MOSFETs: Device Design Guidelines," IEEE Tran. Electron Dev., vol. 49, pp. 2222-2229, 2002.
[4] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “al., "FinFET-a Self-Aligned Double-gate MOSFET Scalable to 20 nm," IEEE Trans. Electron Dev.,” vol. 47, pp. 2320-2325, 2000.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, pp. 666-669, 2004.
[6] F. Schwierz, “Graphene Transistors,” Nat. Nanotechnol., vol. 5, pp. 487-496, 2010.
[7] K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, and J. Lu, “Electric Field Induced Energy Gap in Few Layer Graphene,” J. Phys. Chem. C, vol. 115, pp. 9458-9464, 2011.
[8] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102-1120, 2014.
[9] A. B. Kaul, “Two-Dimensional Layered Materials: Structure, Properties, and Prospects for Device Applications,” J. Mater. Res., vol. 29, no. 3, pp. 348-361, 2014.
[10] H. Wang, H. Yuan, S. S. Hong, Y. Li, and Y. Cui, “Physical and Chemical Tuning of Two-Dimensional Transition Metal Dichalcogenides,” Chem. Soc. Rev., vol. 44, pp. 2664-2680, 2015.
[11] H. Yang, S. W. Kim, M. Chhowalla, and Y. H. Lee, “Structural and Quantum-state Phase Transitions in Van Der Waals Layered Materials,” Nat. Phys., vol. 13, pp. 931-937, 2017.
[12] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets,” Nat. Chem., vol. 5, pp. 263-275, 2013.
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single Layer MoS2 Transistors,” Nat. Nanotechnol., vol. 6, pp. 147-150, 2011.
[14] H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, “Integrated Circuits Based on Bilayer MoS2 Transistors,” Nano Lett., vol. 12, pp. 4674-4680, 2012.
[15] Z. Yu, Z.‐Y. Ong, Y. Pan, Y. Cui, R. Xin, Y. Shi, B. Wang, Y. Wu, T. Chen, Y.‐W. Zhang, G. Zhang, and X. Wang, “Realization of Room‐Temperature Phonon‐Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening,” Adv. Mater., vol. 3, pp. 547-552, 2016.
[16] Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y.-W. Zhang, Y. Shi and X. Wang, “Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering,” Nat. Commu., vol. 5, p. 5290, 2014.
[17] K. Zhang, Y. Feng, F. Wang, Z. Yanga, and J. Wang, “Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications,” J. Mater. Chem. C, vol. 5, pp. 11992-12022, 2017.
[18] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical Contacts to Two-Dimensional Semiconductors,” Nat. Mater., vol. 14, pp. 1195-1205, 2015.
[19] D. Jena, K. Banerjee, and G. H. Xing, “Intimate Contacts,” Nat. Mater., vol. 13, pp. 1076-1078, 2014.
[20] D. Somvanshi, S. Kallatt, C. Venkatesh, S. Nair, G. Gupta, J. K. Anthony, D. Karmakar, and K. Majumdar, “Nature of Carrier Injection in Metal/2D-Semiconductor Interface and its Implications for the Limits of Contact Resistance,” Phys. Rev. B, vol. 96, p. 205423, 2017.
[21] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition,” Nano Lett., vol. 16, pp. 3824-3830, 2016.
[22] L. Yang, K. Majumdar, Y. Du, H. Liu, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, “High-Performance MoS2 Field-Effect Transistors Enabled by Chloride Doping: Record Low Contact Resistance (0.5 kΩ·µm) and Record High Drain Current (460 µA/µm),” Proc. VLSI Technol. Symp., 2014.
[23] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors,” Nat. Mater., vol. 13, pp. 1128-1134, 2014.
[24] S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, H. Yang, “Phase Patterning for Ohmic Homojunction Contact in MoTe2,” Science, vol. 349, pp. 625-628, 2015.
[25] K. S. Novoselov, and A. H. C. Neto, “Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties,” Phys. Scr., vol. 2012, p. 014006, 2012.
[26] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A. Z. Moshfegh, “Group 6 Transition Metal Dichalcogenide Nanomaterials: Synthesis, Applications and Future Perspectives,” Nanoscale Horiz., vol. 3, pp. 90-204, 2018.
[27] J.-H. Huang, K.-Y. Deng, P.-S. Liu, C.-T. Wu, C.-T. Chou, W.-H. Chang, Y.-J. Lee, and T.-H. Hou, “Large-Area 2D Layered MoTe2 by Physical Vapor Deposition and Solid-Phase Crystallization in a Tellurium-Free Atmosphere,” Adv. Mater. Interfaces, vol. 4, p. 1700157, 2017.
[28] K.-. N. Duerloo1, Y. Li, and E. J. Reed, “Structural Phase Transitions in Two-Dimensional Mo- and W-Dichalcogenide Monolayers,” Nat. Commun., vol. 5, 4214, 2014.
[29] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.
[30] C. V. Raman, and K. S. Krishnan, “A New Type of Secondary Radiation,” Nat. Lett., vol. 121, pp. 489-524, 1928.
[31] D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, and K. J. Chang, "Bandgap Opening in Few Layered Monoclinic MoTe2," Nat. Phys., vol. 11, pp. 482-486, 2015.
[32] M. Kan, H. G. Nam, Y. H. Lee, and Q. Sun, "Phase Stability and Raman Vibration of the Molybdenum Ditelluride (MoTe2) Monolayer," Phys. Chem. Chem. Phys., vol. 17, pp. 14866-14871, 2015.
[33] X. Xu, S. Chen, S. Liu, X. Cheng, W. Xu, P. Li, Y. Wan, S. Yang, W. Gong, K. Yuan, P. Gao, Y. Ye, and L. Dai, “Millimeter-Scale Single-Crystalline Semiconducting MoTe2 via Solid-to-Solid Phase Transformation,” J. Am. Chem. Soc., vol. 141, pp. 2128-2134, 2019.
[34] H. H. Huang, X. Fan, D. J. Singh, H. Chen, Q. Jiang, and W. T. Zheng, “Controlling Phase Transition for Single-Layer MTe2 (M = Mo and W): Modulation of the Potential Barrier under Strain,” Phys. Chem. Chem. Phys., vol. 18, pp. 4086-4094, 2016.
[35] S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, “Room Temperature Semiconductor−Metal Transition of MoTe2 Thin Films Engineered by Strain,” Nano Lett., vol. 16, pp. 188-193, 2016.
[36] G. Wulff, “Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflagen,” Z. Kryst. Mineral., vol. 34, p. 449, 1901.
[37] J. W. Gibbs, “On the Equilibrium of Heterogeneous Substances,” Am. J. Sci., Series 3 vol. 16, pp. 441-458, 1878.
[38] X. Zhang, J. Xin, and F. Ding, “The Edges of Graphene,” Nanoscale, vol. 5, pp. 2556-2569, 2013.
[39] D. Cao, T. Shen, P. Liang, X. Chen, and H. Shu, “Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2,” J. Phys. Chem. C, vol. 119, pp. 4294-4301, 2015.
[40] V. I. Artyukhova, Y. Liu, and B. I. Yakobson, “Equilibrium at the Edge and Atomistic Mechanisms of Graphene Growth,” PNAS, vol. 109, pp. 15136-15140, 2012.
[41] T. Ma, W. Ren, X. Zhang, Z. Liu, Y. Gao, L.-C. Yin, X.-L. Ma, F. Ding, and H.-M. Cheng, “Edge-Controlled Growth and Kinetics of Single-Crystal Graphene Domains by Chemical Vapor Deposition,” PNAS, vol. 110, pp. 20386-20391, 2013.
[42] L. Ma, J. Wang, and F. Ding, “Recent Progress and Challenges in Graphene Nanoribbon Synthesis,” Chem. Phys. Chem., vol. 14, pp. 47-54, 2013.
[43] T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsuda, “High-Quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method,” Journal of Non-Crystalline Solids, vol. 198-200, pp. 940-944, 1996.
[44] T. Sameshima, S. Usui, and M. Sekiya, “XeCl Excimer Laser Annealing Used in the Fabrication of Poly-Si TFT's,” IEEE Electron Dev. Lett., vol. 7, pp. 276-278, 1986.
[45] S.-W. Lee, and S.-K. Joo, “Low Temperature Poly-Si Thin-Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Dev. Lett., vol. 17, pp. 160-162, 1996.
[46] V. Subramanian, “Control of Nucleation and Grain Growth in Solid-Phase Crystallized Silicon for High-Performance Thin Film Transistors,” 1998.
[47] S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi, “A Review of Classical and Nonclassical Nucleation Theories,” Cryst. Growth Des., vol. 16, pp. 6663-6681, 2016.
[48] J. L. M. Rupp, B. Scherrer, N. Schäuble, and L. J. Gauckler, “Time–Temperature–Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films,” Adv. Funct. Mater., vol. 20, pp. 2807-2814, 2010.
[49] J. Wang, X. Guo, Z. Yu, Z. Ma, Y. Liu, M. Chan, Y. Zhu, X. Wang, and Y. Chai, “Steep Slope p-type 2D WSe2 Field-Effect Transistors with Van Der Waals Contact and Negative Capacitance,” IEEE International Electron Devices Meeting, 2018.
[50] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, “Defect Dominated Doping and Contact Resistance in MoS2,” ACS Nano, vol. 8, pp. 2880-2888, 2014.
[51] H. Taghinejad, A. A. Eftekhar, P. M. Campbell, B. Beatty, M. Taghinejad, Y. Zhou, C. J. Perini, H. Moradinejad, W. E. Henderson, E. V. Woods, X. Zhang, P. Ajayan, E. J. Reed, E. M. Vogel, and A. Adibi, “Strain Relaxation via Formation of Cracks in Compositionally Modulated Two-Dimensional Semiconductor Alloys,” npj 2D Materials and Applications, 2(1), 10, 2018.
[52] R. Kapoor, “Severe Plastic Deformation of Materials,” in “Materials under Extreme Conditions,” pp. 717-754, 2017.
[53] S. Ye, K. Xu1, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, “Nanoscratch on Single-Layer MoS2 Crystal by Atomic Force Microscopy: Semi-Circular to Periodical Zigzag Cracks,” Mater. Res. Express, vol. 6, 025048, 2019.
[54] P. J. Jeon, J. S. Kim, J. Y. Lim, Y. Cho, A. Pezeshki, H. S. Lee, S. Yu, S.-W. Min, and S. Im, “Low Power Consumption Complementary Inverters with n‑MoS2 and p‑WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits,” ACS Appl. Mater. Interfaces, vol. 7, pp. 22333-22340, 2015.
[55] X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, “Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges,” Chem. Soc. Rev., vol. 44, pp. 8859-8876, 2015.
[56] X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W. J. Yoo, “P-Type Polar Transition of Chemically Doped Multilayer MoS2 Transistor, “Adv. Mater., vol. 28, pp. 2345-2351, 2016.
[57] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, “MoS2 P-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts,” Nano Lett., vol. 14, pp. 1337-1342, 2014.
[58] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, “Approaching the Schottky–Mott Limit in Van Der Waals Metal–Semiconductor Junctions,” Nature, vol. 557, pp. 696-700, 2018.
[59] F. A. Rasmussen, and K. S. Thygesen, “Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides,” J. Phys. Chem. C, vol. 119, pp. 13169-13183, 2015.
[60] K. Dolui, I. Rungger, C. D. Pemmaraju, and S. Sanvito, “Possible Doping Strategies for MoS2 Monolayers: An ab initio Study,” Phys. Rev. B, vol. 88, p. 075420, 2013.
[61] Y.-M. Chang, S.-H. Yang, C.-Y. Lin, C.-H. Chen, C.-H. Lien, W.-B. Jian, K. Ueno, Y.-W. Suen, K. Tsukagoshi, and Y.-F. Lin, “Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping,” Adv. Mater., vol. 30, p. 1706995, 2018.
[62] J. Zhou1, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, and Z. Liu, “A Library of Atomically Thin Metal Chalcogenides,” Nature, vol. 556, pp. 355-359, 2018.
[63] C. Lang, M. Hiscock, K. Larsen, J. Moffat, and R. Sundaram, “Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy,” Appl. Microsc., vol. 45, pp. 131-134, 2015.
電子全文 電子全文(網際網路公開日期:20241026)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top