跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李財華
研究生(外文):Lee, Tsai-Hua
論文名稱:毫米波頻帶之單一使用者多輸入多輸出混合式預編碼與結合器設計
論文名稱(外文):Design of mmWave Hybrid Precoder and Combiner for SU-MIMO Systems
指導教授:周世傑周世傑引用關係劉志尉
指導教授(外文):Jou, Shyh-JyeLiu, Chih-Wei
口試委員:周世傑劉志尉陳紹基蔡佩芸
口試委員(外文):Jou, Shyh-JyeLiu, Chih-WeiChen, Sau-GeeTsai, Pei-Yun
口試日期:2019-11-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:毫米波混合波束成形單一使用者多輸入多輸出
外文關鍵詞:mmWaveHybrid BeamformingSU-MIMO802.11ay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了滿足未來的高通訊流量需求,無線通訊系統朝向毫米波頻帶發展,獲取更寬的頻譜進行更大量的資料傳輸。然而,毫米波頻帶通道具有高衰減的特性,因而對收發機造成嚴重的性能衰退。因此,運用波束成形來提高傳輸能量,並減弱資料流間的干擾變得極為重要。儘管過去在微波頻段已有研究提出一些全數位與全類比的方式來完成波束成形。然而高耗能、高不穩定性的類比及射頻元件數量在傳統方法將會與天線數量有關,促使採取巨量天線以提高傳輸速率並克服嚴重的通道衰減的方法不可行。而有別於以往之研究方法,在此論文中基於混合波束成形的方法,針對現有的單一使用者多資料傳輸演算法,進行改良以符合實際應用情境,也針對多使用者多資料流傳輸的情境,提出演算法並透過模擬結果證實效能相較於現有的演算法佳。
除此之外,基於IEEE 802.11ay單一使用者傳輸多個資料流且採用3/4 LDPC通道編碼與π/2-16QAM/π/2-64QAM,其未解碼位元錯誤率於18.52dB/25.52dB達到3.067×〖10〗^(-3)的標準下,從系統層面進行整體效能分析以及混合式預編碼器與解碼器設計,以替未來系統開發作準備。
在硬體架構實作上,提出整體傳送端的控制器,並採用四倍平行的架構達到1.76GHz的碼片率以及支援兩條資料流傳輸,其傳輸速率可在π/2-16QAM/π/2-64QAM條件下達到14.08/21.12 Gb/s。此外,其面積相較於先前設計的兩套FFT/IFFT模組更只有2.1%/1.4%。
In order to meet the requirement of explosive communication traffic in the future, wireless communication system is to use the mmWave frequency band to have a larger bandwidth for high throughput transmission. However, the channels in the mmWave frequency band suffer from severe attenuation, which consequently seriously degrades the performance of transceiver system. Therefore, strengthening transmitted power and mitigating interference via beamforming technique become extremely important. Although existing fully digital and fully analog beamforming technique have been proposed in the microwave frequency band, the high power consumption and unstable analog front-end components and radio frequency (RF) modules make adopting massive antennas to increase transmission rate and overcome the severe channel attenuation infeasible. This is because the number of analog front-end components and RF modules are correlated with the number of antennas in the traditional method. Different from traditional beamforming methods, in this thesis, based on the hybrid beamforming technique, existing SU-MIMO algorithms are improved to conform to the actual application scenario. In addition, a MU-MIMO algorithm is also proposed to such that its performance is better than the existing algorithm.
Moreover, based on un-coded bit error rate (BER) 3.067×〖10〗^(-3) before SNR of 18.52dB and 25.52dB in π/2-16QAM and π/2-64QAM with 3/4 coding rate scenarios in IEEE 802.11ay, the whole system performance is analyzed and the hybrid precoder and combiner are designed from a system point of view to prepare for the future system development.
In the hardware implementation, overall TX controller which targets on 4-times parallelism to achieve 1.76 GHz chip rate and supports transmission of two data streams is proposed. The data rate is increased to 14.08/21.12 Gb/s under π/2-16QAM/π/2-64QAM. In addition, the area of proposed overall TX controller is only 2.1%/1.4% of two sets of FFT/IFFT which are designed previously.
Chapter 1 Introduction and Motivation 1
1.1 Introduction to mmWave Wireless Communication 1
1.2 Introduction to Beamforming 3
1.3 Motivation and Goals 5
1.4 Thesis Organization 7
Chapter 2 Overview of IEEE 802.11ay Standard 8
2.1 IEEE 802.11ay Standard 8
2.1.1 Basic Specifications 8
2.1.2 PHY Frame Structure 11
2.1.3 Channe Bonding and Channel Aggregation 16
2.2 Modified SC Frame Structure 17
2.3 IEEE 802.11ay Beamforming Specification 19
2.4 Summary 21
Chapter 3 Overview of SU/MU-MIMO Hybrid Beamforming Algorithm 22
3.1 SU-MIMO Hybrid Beamforming Algorithm 22
3.1.1 System Model 22
3.1.2 Channel Model 24
3.1.3 Spectrum Efficiency 25
3.1.4 Orthogonal Matching Pursuit (OMP) 27
3.1.5 Orthogonal based Matching Pursuit (OBMP) 30
3.1.6 Proposed SU-MIMO Algorithm 32
3.2 MU-MIMO Hybrid Beamforming Algorithm 33
3.2.1 System Model 33
3.2.2 Channel Model 35
3.2.3 Spectrum Efficiency 35
3.2.4 Two-Stage Algorithm 36
3.2.5 Iterative Algorithm 40
3.2.6 Proposed MU-MIMO Algorithm 42
3.3 Performance Simulations and Comparisons of MU-MIMO 44
3.3.1 Simulation Results of Single Data Stream Transmission 44
3.3.2 Simulation of Multi-Stream Transmission 48
3.4 Summary 52
Chapter 4 Hybrid Precoder and Combiner Design of SU-MIMO for 802.11ay SC System 53
4.1 Simulation Model 53
4.1.1 Phase Shifter with Finite Resolution 53
4.1.2 Channel Model 54
4.1.3 Block Diagram of Precoder and Combiner 55
4.2 Analog Precoder and Combiner Design 57
4.2.1 Golay-Sequence Aided Beam Selection Method 57
4.2.2 Optimized Golay Correlator 61
4.3 Digital Precoder and Combiner Design 61
4.3.1 Singular Value Decomposition (SVD) 62
4.3.2 Zero Forcing (ZF) 63
4.3.3 Minimum Mean Square Error (MMSE) 63
4.4 Hybrid Precoder and Combiner System Flow 64
4.5 Simulation Results 65
4.5.1 Simulation Results under Different Conditions 65
4.5.2 Extension to 64-QAM 68
4.6 Summary 69
Chapter 5 Architecture and Implementation of 802.11ay TX Controller 71
5.1 Proposed TX Controller Architectures 71
5.2 RTL Synthesis Result 79
5.3 Summary 80
Chapter 6 Conclusion and Future Work 81
Appendix A MMSE Derivation 83
Reference 86
[1] M. G. L. Frecassetti, “E-Band and V-Band Survey on Status of Worldwide Regulation,” Tech. Rep., Jun. 2015.[Online].Available:http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp9_e_band_and_v_band_survey_20150629.pdf
[2] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical LayerExtension, IEEE Std. 802.15.3c, 2009.
[3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Std. 802.11ad, 2012.
[4] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2:Enhanced throughput for operation in license-exempt bands above 45 GHz, IEEE Draft Standard 802.11ay, 2019
[5] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro and E. W. Knightly, "IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi," in IEEE Communications Magazine, vol. 55, no. 12, pp. 186-192, Dec. 2017.
[6] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic and R. W. Heath, "MIMO Precoding and Combining Solutions for Millimeter-Wave Systems," in IEEE Communications Magazine, vol. 52, no. 12, pp. 122-131, Dec. 2014.
[7] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014.
[8] I. Ahmed et al., "A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives," in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060-3097, Fourthquarter 2018.
[9] “IMT-Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, Sep.2015. [Online] Available:https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf.
[10] Lorenzo Casaccia, “Liver from San Diego, 3GPP sets out to expand 5G into new industries, ” June.2018. [Online] Available: https://www.rcrwireless.com/20180619/5g/177125
[11] MoneyDJ, “靠技術擊垮華為?三星推 5G 設備,誓搶 20% 全球市占, ” [Online] Available: https://technews.tw/2018/07/16/samsung-push-5g-device-grab-global-market-20percent/
[12] NTT DOCOMO ,“DOCOMO and NEC Achieve 5G Communication with Multiple Mobile Terminals by Reducing Interfernce via Beamforming and Inter-base Station Coordination,” [Online] Available: https://www.nttdocomo.co.jp/english/info/media_center/pr/2018/0601_00.html
[13] 快科技 “工程部正式劃定5G頻段:全世界都在等中國, ” [Online] Available: http://tech.sina.com.cn/mobile/n/n/2017-11-17/doc-ifynwxum2058890.shtml
[14] C. T. Wu, “A Pseudo MMSE Linear Equalizer for 60 GHz Band 10Gbps Single Carrier Baseband Receiver,” Master Thesis, Dept. of EE, National Chiao Tung University, Hsinchu, Taiwan, Feb. 2018.
[15] W. C. Lee, "Phase Noise-Robust Synchronization and Phase Noise Compensation Design for 10Gbps Single Carrier Baseband Receiver at 60 GHz Band,” Master Thesis, Dept. of EE, National Chiao Tung University, Hsinchu, Taiwan, Feb. 2018
[16] W. C. Liu, “Design for Indoor Wireless Digital Baseband Receiver at 60 GHz Band and Timing-Error Resilient Circuit,” Doctor Thesis, Dept. of EE, National Chiao Tung University, Hsinchu, Taiwan, Sep. 2014.
[17] Z. C. Huang, “Design of Jointly Adaptive Estimation and Compensation for IQ Imbalance and DC Voltage Offset in a Single Carrier Baseband Receiver at 60GHz Band,” Master Thesis, Dept. of EE, National Chiao Tung University, Hsinchu, Taiwan, October. 2018.
[18] P. Zhou et al., "IEEE 802.11ay-Based mmWave WLANs: Design Challenges and Solutions," in IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1654-1681, third quarter 2018.
[19] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014.
[20] W. Hung, C. Chen, C. Liao, C. Tsai and A. A. Wu, "Low-complexity hybrid precoding algorithm based on orthogonal beamforming codebook," 2015 IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, 2015, pp. 1-5.
[21] X. S. Huang, “Design of Hybrid Beamforming Algorithm and Architecture for Multi-User MIMO Systems,” Master Thesis, Dept. of EE, National Central University, Taoyuan, Taiwan, June. 2018.
[22] A. Alkhateeb, R. W. Heath and G. Leus, "Achievable rates of multi-user millimeter wave systems with hybrid precoding," 2015 IEEE International Conference on Communication Workshop (ICCW), London, 2015, pp. 1232-1237.
[23] N. Song, T. Yang and H. Sun, "Overlapped Subarray Based Hybrid Beamforming for Millimeter Wave Multiuser Massive MIMO," in IEEE Signal Processing Letters, vol. 24, no. 5, pp. 550-554, May 2017.
[24] V. Stankovic and M. Haardt, "Generalized Design of Multi-User MIMO Precoding Matrices," in IEEE Transactions on Wireless Communications, vol. 7, no. 3, pp. 953-961, March 2008.
[25] P. Tsai and X. Huang, "Design of Iterative Hybrid Beamforming for Multi-User mmWave Massive MIMO Systems," 2018 IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, 2018, pp. 123-128.
[26] H. Sawada, H. Nakase, S. Kato, M. Umehira, K. Sato and H. Harada, "Impulse Response Model and Parameters for Indoor Channel Modeling at 60GHz," 2010 IEEE 71st Vehicular Technology Conference, Taipei, 2010, pp. 1-5.
[27] ”IEEE P802.11 Task Group ay.” [Online] Available: http://www.ieee802.org/11/Reports/tgay_update.htm
[28] Z. Huang and P. Tsai, "Efficient Implementation of QR Decomposition for Gigabit MIMO-OFDM Systems," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2531-2542, Oct. 2011.
[29] Y. Hwang and W. Chen, "MMSE-QR factorization systolic array design for applications in MIMO signal detections," Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 4181-4184.
[30] Z. Mokhtari, M. Sabbaghian and R. Dinis, "Massive MIMO Downlink Based on Single Carrier Frequency Domain Processing," in IEEE Transactions on Communications, vol. 66, no. 3, pp. 1164-1175, March 2018.
[31] H. S. Eshwaraiah and A. Chockalingam, "SC-FDMA for multiuser communication on the downlink," 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2013, pp. 1-7.
[32] E. Auger, B. Rankov, M. Kuhn, and A. Wittneben, “Time Domain Precoding for MIMO-OFDM Systems,” in Proc. 10th International OFDM-Workshop, August 2005.
電子全文 電子全文(網際網路公開日期:20241123)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 毫米波之單一載波基頻接收機運用機器學習方法聯合補償類比前端不理想效應之架構
2. 用於非線性與記憶性功率放大器之毫米波基頻發射機的低複雜度擬直接學習數位預補償架構
3. 應用於卷積神經網路的高平行度電阻式隨機存取記憶體內運算架構
4. 60 GHz頻帶10 Gbps單一載波基頻接收機的可抵抗高相雜訊之同步與相雜訊補償設計
5. 次奈秒讀寫及次毫瓦每千兆赫茲之32Kb 5T靜態隨機存取記憶體和靜態隨機存取記憶體內運算之多位元緩衝器設計
6. 應用於60GHz頻帶10Gbps單一載波基頻之脈波成形和同相與正交分量不平衡及直流偏壓準位偏移聯合補償設計
7. 工作於次奈秒讀取且次毫瓦每千兆赫茲之28奈米製程0.45伏電壓之32Kb 5T之靜態隨機存取記憶體與記憶體內運算架構
8. 應用於高吞吐量無線通信系統之多速率LDPC解碼器的設計與實現
9. IEEE802.11ay之單一使用者多輸入多輸出混合式波束成形系統之時域數位預編碼設計
10. 應用於卷積神經網路之可重組式具內部運算功能的靜態隨機存取記憶體
11. 建構與應用特殊語詞資訊於文件重排序之研究
12. 1.25 GHz頻寬下利用EHC-Frank碼實現干擾抑制之多使用者雷達系統
13. 設計應用於低功率深度神經網路之電阻式記憶體的類比運算模組
14. 高吞吐率且高面積效率超長點數快速傅立葉轉換處理器之RTL自動產生器
15. 抗干擾雷達系統研究與設計