|
[1] S. Takagi et al., "Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance," IEEE Trans. Electron Devices, vol. 55, no.1, p. 25, 2008. [2] K. Kuhn et al., "Past, present and future: SiGe and CMOS transistor scaling," Electrochemical society trans., vol. 33, no. 6, pp. 13-17, 2010. [3] E.P. Gusev, Huiling Shang, Matt Copel, M.A. Gribelyuk, C. D’Emic, P. Kozlowski, T. Zabel, "Microstructure and thermal stability of HfO2 gate dielectric deposited on Ge (100)," Appl. Phys. Lett., vol. 85, no. 12, pp. 2334-2336, 2004. [4] T. Ghani et al., "A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors," IEDM Tech. Dig., pp. 978–980, 2003. [5] T. Maeda, M. Nishizawa, and Y. Morita, "Role of germanium nitride interfacial layers in HfO2 /germanium nitride/germanium metal–insulator– semiconductor structures," Appl. Phys. Lett., vol. 90, pp. 072911-1-072911-3, 2007. [6] Ruilong Xie and Chunxiang Zhu, "Effects of sulfur passivation on Germanium MOS Capacitors with HfON Gate Dielectric," IEEE Electron Device Letters, vol. 28, no. 11, pp. 976-979, 2007. [7] W. P. Bai, N. Lu, and D.-L. Kwong, "Si interlayer passivation on germanium MOS capacitors with high-dielectric and metal gate," IEEE Electron Device Letters, vol. 26, no. 6, 2005. [8] Martin M. Frank, Steven J. Koester, Matthew Copel, John A. Ott, Vamsi K. Paruchuri, and Huiling Shang, "Hafnium oxide gate dielectrics on sulfur-passivated germanium," Appl. Phys. Lett., vol. 89, pp. 112905-1-112905-3, 2006. [9] G. Venkata Rao, M.Kumar, T.V.Rajesh, D.V. Rama Koti Reddy, D.Anjaneyulu, B. Sainath and S.V.Jagadeesh Chandra, "Investigations on the nitride interface engineering at HfO2/Ge stacks for MOS devices," Materials Today: Proceedings, vol. 5, no. 1, pp. 650-656, 2018. [10] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, "Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces," Appl. Phys. Lett., vol. 76, no.16, pp. 2244-2246, 2000. [11] A. P. Huang, Z. C. Yang, and P. K. Chu, "Hafnium-based high-k gate dielectrics," Advances in solid state circuit technologie, pp.333-350, 2010. [12] A.Vandooren et al., "Key challenges and opportunities for 3D sequential integration," IEEE, 2018 [13] N. Usami, T. Mine, S. Fukatsu, and Y. Shiraki, "Realization of crescent‐shaped SiGe quantum wire structures on a V‐groove patterned Si substrate by gas‐source Si molecular beam epitaxy," Appl. Phys. Lett., vol. 63, no. 20, p. 2789, 1993. [14] K. Kawaguchi, N. Usami, Y. Shiraki, "Formation of Ge QD/SiO2/SiGe heterostructure formed at medium temperatures," Thin Solid Films, vol. 369, p. 126, 2000. [15] C. Fenouillet-Beranger et al., "FDSOI bottom MOSFETs stability versus top transistor thermal budget featuring 3D monolithic integration," Solid State Electronics, vol. 113, pp. 2-8, 2015. [16] P Batude et.al., "3DVLSI with CoolCube process: An alternative Path to Scaling," VLSI-T, pp. T48-T49, 2015. [17] C. M.V Lu et al., "Key process steps for high performance and reliable 3D sequential integration," VLSI, 2017. [18] P. Batude et al., "3D sequential integration opportunities and technology optimization," IEEE Int. Interconnect Technol. Conf., pp. 373–376, 2014. [19] P. Batude et al., "3D Sequential Integration: Application-Driven technological achievements and guidelines," IEEE International Electron Devices Meeting, pp. 52-55, 2017. [20] W. T. Lai, K. C. Yang, P. H. Liao, T. George and P. W. Li, "Gate-Stack Engineering for Self-Organized Ge-dot/SiO2/SiGe-Shell MOS Capacitors," Frontiers in Materials, vol.3, Article 5, 2016. [21] C. Wagner, "Oxidation of alloys involving noble metals," J. Electrochem. Soc., vol. 103, pp. 571-580, 1956. [22] D. Starodub, E. P. Gusev, E. Garfunkel and T. Gustafsson, "Silicon oxide decomposition and desorption during the thermal oxidation of silicon," Surf. Rev. Lett., vol. 6, no. 1, pp. 45–52, 1999. [23] A. Stekolnikov and F. Bechstedt, "Shape of free and constrained group-IV crystallites: Influence of surface energies," Physical Review B, vol. 72, no. 12, p. 125326, 2005. [24] M. H. Kuo, M. M. Lee, and P.W. Li, " High photoresponsivity germanium nanodot photo-MOSFETs for monolithically-integrated Si optical interconnects," IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers, pp. 189–190, 2017. [25] M. H. Kuo, P. Y. Hong, P. C. Liu, M. C. Lee, H. C. Lin, T. George, and P. W. Li, "Very large photoresponsiviy and high photocurrent linearity for Ge-dot/SiO2/SiGe photoMOSFETs under gate modulation," Optics Express, vol. 25, no. 21, pp. 25467–25476, 2017. [26] K. H. Chen, C. C. Wang, T. George, and P. W. Li, "The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots," Appl. Phys. Lett., vol. 105, p. 122102, 2014. [27] L. Nesbit, "Annealing characteristics of Si‐rich SiO2 films," Appl. Phys. Lett., vol. 46, no. 1, pp. 38-40, 1985. [28] M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, "Fabrication techniques for low-loss silicon nitride waveguides," in Proc. Micromachining Technol. Micro-Opt. Nano-Opt. III, vol. 5720, pp. 109-118, 2005. [29] J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express, vol. 19, p. 24090 2011. [30] K. P. Peng, T. L. Huang, T. George, H. C. Lin and P. W. Li, "Ge nanodot-mediated densification and crystallization of low-pressure chemical vapor deposited Si3N4 for advanced complementary metal-oxide-semiconductor photonics and electronics applications," Nanotechnology, vol. 30, 405201, 2019. [31] Y. R. Luo, "Bond dissociation energies," in CRC Handbook of Chemistry and Physics, 90th ed., 2009. [32] J. Plummer, M. D. Deal, P. B. Griffin, “Silicon VLSI technology; fundamentals, practice and modeling,” Prentice Hall Electronics and VLSI series, p. 349, 2000. [33] C. C. Wang, P. H. Liao, M. H. Kuo, T. George and P. W. Li, "The curious case of exploding quantum dots:anomalous migration and growth behaviors of Ge under Si oxidation," Nanoscale Research Letters, vol. 8, no. 192, p. 4, 2013. [34] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots” Appl. Phys. Lett., vol. 105, p. 122102, 2014.
|