跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭家均
研究生(外文):Guo, Jia-Jiun
論文名稱:基於高精準度多維成像重建模型的連續波擴散式光學斷層掃描系統應用於乳房腫瘤偵測
論文名稱(外文):A Continuous Wave Diffusion Optical Tomography System Based on High-Accuracy Multidimensional Imaging Reconstruction Model for Breast Tumor Detection
指導教授:方偉騏
指導教授(外文):Fang, Wai-Chi
口試委員:杭學鳴劉建男高文忠方偉騏
口試委員(外文):Hang, Hsueh-MingLiu, Chien-NanKao, Wen-ChungFang, Wai-Chi
口試日期:2019-10-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:82
中文關鍵詞:擴散光學斷層掃描疊代演算法多維重建演算法乳房腫瘤偵測數位信號處理
外文關鍵詞:diffuse optical tomographyiteration methodmultidimensional reconstruction algorithmbreast tumor detectiondigital signal processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫學影像泛指以非侵入量測人體組織的成像技術。其中使用近紅外光為光源的擴散式光學斷層掃描(DOT)是一種近年來新興的醫學影像技術,在乳癌的早期檢測中有巨大的潛力,且具有靈敏且低成本的特性。然而,由於光傳播的擴散特性,DOT的求解具有高度非線性的、非唯一且不穩定的問題。
本文使用蒙特卡羅方法求解前向問題,採用修正的比爾-蘭伯特定律作為反向問題的主要原理,並開發了迭代演算法來求解非線性反向問題。為了達到可攜帶裝置的目的,本論文提出了一集成式DOT系統。
該系統包括光發射源-偵測器前端陣列電路、類比數位轉換器、實現於FPGA的數位信號處理器以及藍牙無線通信模組,最後將重建結果發送到電腦或可移動之設備上顯示。提出的系統的功能已使用靜態人體乳房仿體進行了驗證。此系統的量測範圍為6.6 cm * 4.6 cm,深度為2cm。
Medical imaging is an important technology in biological imaging. It can noninvasively produce images of the internal aspect of the body. Diffuse Optical Tomography (DOT) is an emerging medical imaging technique using near-infrared light and has great potential in the early detection of breast cancer. It is a sensitive and relatively low-cost imaging modality. However, due to the diffusive nature of light propagation, the problem is severely ill-conditioned and highly nonlinear as well as often nonunique and unstable.
This paper uses the Monte-Carlo method to solve the forward problem, adopts the modified Beer–Lambert’s law as the main principle of the inverse algorithm and develops the iteration algorithm to solve the nonlinear inverse problem. In order to achieve the goal of the portable device, the integrated mobile DOT system is proposed. The system comprises a source-detectors array front-end circuit, an analog to digital converter, a digital signal processing implement on a Field Programmable Gate Array and a Bluetooth wireless communication module to send the results to the GUI interface on a remote displaying device. The functionalities of the proposed system were validated using an experimental static human breast phantom. The field of view (FOV) of the proposed system is 6.6 cm*4.6 cm and the depth is 2cm.
中文摘要 i
Abstract ii
誌謝 iv
Outline v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Medical Imaging 2
1.3 Diffuse Optical Tomography 5
1.4 Related Work 9
1.5 Motivation 11
1.6 Contribution 11
1.7 Thesis Organization 12
Chapter 2 Iteration Reconstruction Algorithm 13
2.1 Hexagonal Structure 13
2.1.1 Geometric Position 13
2.1.1 Detection Scale 14
2.2 Forward Model 15
2.2.1 Photon Behavior 15
2.2.2 Monte-Carlo Method 17
2.2.3 Inverse Transform Sampling 18
2.2.4 Mathematical Expression 20
2.2.5 Propagation Rules 21
2.3 Light Propagation 24
2.3.1 Beer-Lambert Law 24
2.3.2 Modified Beer-Lambert Law 24
2.3.3 Variable Definitions 26
2.4 Formula Derivation 27
2.4.1 Top Layer 27
2.4.2 Middle Layer 30
2.4.3 Bottom Layer 33
2.4.4 Iteration Process 36
2.4.5 Parameter Tables 37
2.5 Simulation Results 40
2.6 Modified Algorithm 43
2.6.1 Parameter Calibration 43
2.6.2 Boundary Condition 47
Chapter 3 System Architecture 50
3.1 Front-end Sensor Circuit 51
3.1.1 Detector and Source Array 51
3.1.2 Decoder and Encoder Circuit 51
3.1.3 Analog to Digital Converter 52
3.2 Digital Signal Processing 53
3.2.1 System Controller 54
3.2.2 Front-end Controller 56
3.2.3 Reconstruction Processing 57
3.2.4 Data Transfer Converter and Transmit Module 62
3.3 Graphical User Interface 63
3.4 System and Specification 64
Chapter 4 Discussion and Result 65
4.1 Experiment result 65
4.2 Comparison 75
Chapter 5 Conclusions and Future Work 77
5.1 Conclusions 77
5.2 Future Work 77
Reference 79
[1] Ministry of Health and Welfare, 2019, Available on https://dep.mohw.gov.tw/DOS/np-1775-113.html
[2] P. Kapoor and S. V. A. V. Prasad, "Image processing for early diagnosis of breast cancer using infrared images," 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010, pp. 564-566.
[3] D Saslow, J. Hannan, J. Osuch, MH. Alciati, C. Baines, M. Barton, JK. Bobo, C. Coleman, M. Dolan, G. Gaumer, D. Kopans, S. Kutner, DS. Lane, H. Lawson, H. Meissner, C. Moorman, H. Pennypacker, P. Pierce, E. Sciandra, R. Smith and R. Coates, "Clinical breast examination: practical recommendations for optimizing performance and reporting." in CA: a cancer journal for clinicians, vol. 54, no. 6, pp. 327-344, November 2004.
[4] R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” in Medical Physics, vol. 32, no. 4, pp. 1128–1139, May 2005.
[5] W. Wu, J. Guo and W. Fang, "A Portable Three-Dimensional Image Reconstruction System for Breast Tumor Detection," 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, 2018, pp. 1-4.
[6] D.A. Boas, T. Gaudette, G. Strangman, X. Cheng, J.A. Marota and J.B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” in Neuroimage, vol. 13, no. 1, pp. 76–90, January 2001
[7] S. Gokhale, "Ultrasound characterization of breast masses." in The Indian journal of radiology & imaging, vol. 19, no. 3, pp. 242-247, July-Sptember 2009.
[8] P. Taroni, "Diffuse optical imaging and spectroscopy of the breast: A brief outline of history and perspectives," in Photochemical and Photobiological Sciences, vol. 11, no 2, pp. 241-250, November 2011.
[9] G.T. Herman, , Fundamentals of computerized tomography: image reconstruction from projections, London , 2009.
[10] K.W. Lai, Y.C. Hum, M.I.M. Salim, S.B. Ong, N.P. Utama, Y.M. Myint, N.M. Noor, E. Supriyant, "Advances in Medical Diagnostic Technology" in Springer Science & Business Media, vol. 10, no. 3, January 2014.
[11] K.E.P. Moreno and K. Enrique, “Novel mathematical techniques for structural inversion and image reconstruction in medical imaging governed by a transport equation,” in Diss. University of Manchester, 2015.
[12] S. Faalnouri and A. Salmanogli, "Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)," In Nanomedicine Research Journal, vol. 2, no. 3, pp. 189-198, 2017.
[13] L.A Sordillo, Y Pu, S. Pratavieira, Y. Budansky, R.R. Alfano, "Deep optical imaging of tissue using the second and third near-infrared spectral windows." In Journal of biomedical optics, vol. 19, no. 5, May 2014.
[14] D. A. Boas et al., "Imaging the body with diffuse optical tomography," in IEEE Signal Processing Magazine, vol. 18, no. 6, pp. 57-75, Nov. 2001.
[15] M. Rupawala, H. Dehghani, S.J. Lucas, P. Tino, D. Cruse, "Shining a light on awareness: A review of functional near-infrared spectroscopy for prolonged disorders of consciousness." In Frontiers in neurology, vol. 9, pp. 350, May 2018.
[16] M. Chalia, L.A. Dempsey, R.J. Cooper, C.W. Lee, A.P. Gibson, J.C. Hebden and T. Austin, "Diffuse optical tomography for the detection of perinatal stroke at the cot side: a pilot study" in Pediatric research, vol. 85, no. 7, pp. 1001-1007, February 2019.
[17] S.H. Chung, M.D. Feldman, D. Martinez, H. Kim, M.E. Putt, D.R. Busch, J. Tchou, B.J. Czerniecki, M.D. Schnall, M.A. Rosen, A. DeMichele, A.G. Yodh & R.C.M. Rosen, S.H. ChungChung, S. Hyun, "Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures." in Breast Cancer Research, vol. 17, no. 1, pp. 72-86, May 2015.
[18] R. Patra and P. K. Dutta, "Parametric Reconstruction of Diffuse Optical Tomography Using Gaussian Mixture Model and Genetic Algorithm," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 58-68, May-June 2016.
[19] T. Tarvainen, “Computational methods for light transport in optical tomography”, in Doctoral Dissertation, Department of Physics, University of Kuopio, Finland, 2006.
[20] M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg and W. M. Star, "Skin optics," in IEEE Transactions on Biomedical Engineering, vol. 36, no. 12, pp. 1146-1154, Dec. 1989.
[21] L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” in Computer Methods Programs Biomedicine, vol. 47, no. 2, pp. 131–146, July 1995.
[22] Tarvainen T. “Computational methods for light transport in optical tomography”, Doctoral Dissertation, Department of Physics, University of Kuopio, Finland, 2006.
[23] Jaeckel, P, Monte Carlo methods in finance, 2002
[24] Q. Fang , D. Boas, G. Boverman, Q. Zhang, T. Kauffman, “Nonlinear image reconstruction algorithm for diffuse optical tomography using iterative block solver and automatic mesh generation from tomosynthesis images,” in Multimodal Biomedical Imaging, vol. 6081, pp. 145-154, February 2006
[25] C. Tianfeng and R.R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature." in Geoscientific model development, vol. 7, no. 3, pp. 1247-1250, June 2014.
[26] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," in IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004.
[27] C. B. Shaw, Z. Li, B. W. Pogue and P. K. Yalavarthy, "Direct Sensitivity Based Data-Optimization Strategy for Image-Guided Diffuse Optical Tomography," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 69-77, May-June 2016。
[28] C. Chen, F. Tian, H. Liu and J. Huang, "Diffuse Optical Tomography Enhanced by Clustered Sparsity for Functional Brain Imaging," in IEEE Transactions on Medical Imaging, vol. 33, no. 12, pp. 2323-2331, Dec. 2014.
[29] M. Shokoufi and F. Golnaraghi, "Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue," in Journal of Innovative Optical Health Sciences, vol. 12, no. 02, March 2019
電子全文 電子全文(網際網路公開日期:20241220)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 即時性癲癇預測系統實做使用卷積神經網路及其系統晶片設計
2. 基於卷積神經網路系統晶片設計的即時性運動想像腦機介面系統
3. 基於擴散式光學斷層掃描技術應用於即時量測早期乳房腫瘤病變的手持式三維成像系統
4. 多導程心電圖早搏檢測和收縮壓估計的機器學習方法暨嵌入式系統實現
5. 捲積神經網路系統晶片設計及腦波前端類比電路 於即時性情緒辨識應用
6. 基於錯誤相關電位應用於線上與非線上混合腦機介面系統
7. 整合心電圖訊號與光電容積描記法訊號之基於總體經驗模態分解訊號處理暨多項生理資訊監測系統實現及驗證
8. 基於人體通訊之穿戴式生理感測器網路
9. 基於遞迴最小平方自適應濾波器演算法的無線式光容積描計訊號之多項生理參數監測系統實作
10. 具有自動雜訊去除機制之32多通道腦波擷取系統晶片設計
11. 應用於攜帶式即時腦波監控及腦機介面之符合成本效益獨立成分分析晶片系統實現
12. 應用於乳房腫瘤影像之擴散光學斷層掃描三維多層重建演算法系統晶片設計與實現
13. 應用於心臟監護系統之即時偵測心律不整與睡眠呼吸中止症之演算法實現
14. 基於總體經驗模態分解演算法的晶片系統設計及其於光電容積描記法訊號處理系統的應用
15. 基於穩態視覺誘發電位之多通道腦機介面電話撥號系統實作