跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林欣徹
研究生(外文):Lin, Shin-Che
論文名稱:應用於正交分頻多重存取系統之部分輸入/部分輸出多重路徑延遲交換管線式與記憶體式快速傅立葉轉換處理器設計
論文名稱(外文):Design of Partial-Input/Output MDC and Memory-based FFT Processors for OFDMA systems
指導教授:陳紹基陳紹基引用關係簡鳳村
指導教授(外文):Chen, Sau-GeeChien, Feng-Tsun
口試委員:周世傑劉志尉
口試委員(外文):Jou, Shyh-JyeLiu, Chih-Wei
口試日期:2019-12-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:快速傅立葉轉換處理器多重路徑延遲交換記憶體式正交分頻多址部分快速傅立葉轉換
外文關鍵詞:FFT ProcessorsMDCMemory-basedOFDMAPartial FFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
致謝 v
Contents vi
List of figures ix
List of tables xiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Thesis structure 2
Chapter 2 FFT Algorithm 3
2.1 Radix-2 DIT/DIF FFT Algorithm 3
2.1.1 DIT FFT Algorithm 3
2.1.2 DIF FFT Algorithm 5
2.2 High-Radix FFT Algorithms 8
2.2.1 Raidx-4/22 FFT Algorithms 8
2.2.2 Radix-8/23 FFT Algorithms 10
2.2.3 Radix-24 FFT Algorithm 11
2.3 Non-power of 2 FFT Algorithms 13
2.3.1 Radix-3 FFT Algorithm 13
2.3.2 Radix-5 FFT Algorithm 14
2.4 Mixed-radix FFT Algorithms 15
Chapter 3 FFT Architectures 16
3.1 Pipelined FFT Architectures 16
3.1.1 Single-path Delay Feedback FFT architecture 16
3.1.2 Multi-path Delay Feedback FFT Architecture 17
3.1.3 Multi-path Delay Commutator FFT Architecture 18
3.2 Memory-based FFT Architectures 20
3.2.1 Memory-based FFT Architectures 20
3.2.2 Cached-memory FFT Architectures 21
Chapter 4 Radix-2k MDC Partial FFT Processors 22
4.1 Introduction to the OFDMA/SC-FDMA techniques 22
4.2 An Area-Efficient MDC Partial FFT Architecture 26
4.2.1 Existing Partial-Input MDC FFT Architecture 26
4.2.2 The Partial-Output FFT Algorithm 30
4.2.3 Proposed Partial-Output MDC FFT Architecture 32
4.3 Proposed Power-Efficient MDC Partial FFT Architectures 36
4.3.1 Partial-Output MDC FFT for Variable Number of User. 36
4.3.2 Partial-Input MDC FFT for Variable Number of User. 43
4.4 Implementation Results and Comparison 50
Chapter 5 Memory-based Partial FFT Processors for 4G/5G 54
5.1 Introduction to the Resource Allocation in 4G/5G 55
5.1.1 Resouce Allocation in 4G-LTE 55
5.1.2 Resouce Allocation in 5G-NR 57
5.1.3 Conclusion of Resource Allocation 58
5.2 The Memory-based Partial FFT Algorithm 59
5.2.1 Existing Partial Cached-FFT Algorithm 59
5.2.2 Proposed Memory-based Partial FFT Algorithm 60
5.3 The Control Flow for Memory-based Partial FFT 66
5.4 Memory-based Partial FFT Architecture 71
5.4.1 Block Table and Block List 71
5.4.2 A radix-3/22 PE 74
5.5 Implementation Results and Comparison 76
Chapter 6 Conclusion and Future Work 81
6.1 Conclusion 81
6.2 Future Work 82
References 83
[1] J. W. Cooley and J. W. Turkey, “An algorithm for the machine calculation of complex Fourier series,” Math Comput., vol. 19, pp. 297-301, 1965.
[2] Shousheng He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de)modulation," 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167), Pisa, 1998, pp. 257-262
[3] J. Löfgren and P. Nilsson, "On hardware implementation of radix 3 and radix 5 FFT kernels for LTE systems," 2011 NORCHIP, Lund, 2011, pp. 1-4.
[4] M. Garrido, J. Grajal, M. A. Sanchez and O. Gustafsson, "Pipelined Radix-2^k Feedforward FFT Architectures," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23-32, Jan. 2013.
[5] B. M. Baas, "A low-power, high-performance, 1024-point FFT processor," in IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 380-387, March 1999.
[6] National Instruments, "Introduction to 802.11ax High-Efficiency Wireless," Publish Date: Jul 24, 2017. Available: http:www.ni.com/white-paper/53150/en/
[7] M. S. Afaqui, E. Garcia-Villegas and E. Lopez-Aguilera, "IEEE 802.11ax: Challenges and Requirements for Future High Efficiency WiFi," in IEEE Wireless Communications, vol. 24, no. 3, pp. 130-137, June 2017.
[8] IEEE 802.11-15-0132-17-00ax-spec-framework. Available: https://mentor.ieee.org/802.11/dcn/15/11-15-0132-17-00ax-spec-framework.docx
[9] K. Nagai, "Pruning the decimation-in-time FFT algorithm with frequency shift," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp. 1008-1010, August 1986.
[10] Chun-Yueh Kuo, “Investigation and Design of Radix-2k FFT Processors for OFDMA Systems and Radix-3×2k FFT Processors,” M.S. thesis, Dept. Elect. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, 2018.
[11] M. Garrido, S. Huang and S. Chen, "Feedforward FFT Hardware Architectures Based on Rotator Allocation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 581-592, Feb. 2018.
[12] S. Tang, J. Tsai and T. Chang, "A 2.4-GS/s FFT Processor for OFDM-Based WPAN Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 451-455, June 2010.
[13] R. G. Alves, P. L. Osorio and M. N. S. Swamy, "General FFT pruning algorithm," Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144), Lansing, MI, 2000, pp. 1192-1195 vol.3.
[14] Jen-Chia Yee, “Design of Baseband Transmitter for IEEE 802.16e OFDMA,” M.S. thesis, Dept. Elect. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, 2008.
[15] M. Mahdavi, O. Edfors, V. Ówall and L. Liu, "A low latency and area efficient FFT processor for massive MIMO systems," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.
[16] C. Chen, C. Hung and Y. Huang, "An Energy-Efficient Partial FFT Processor for the OFDMA Communication System," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 2, pp. 136-140, Feb. 2010.
[17] Sheng-Yeng, Kai-Ting, Chao-Ming and Yuan-Hao, "Energy-efficient 128∼2048/1536-point FFT processor with resource block mapping for 3GPP-LTE system," The 2010 International Conference on Green Circuits and Systems, Shanghai, 2010, pp. 14-17.
[18] 3GPP TS 36.211 v. 15.2.0, “Physical channels and modulation,” Rel. 15, July 2018.
[19] 3GPP TS 38.211 v. 15.6.0, “Physical channels and modulation,” Rel. 15, June 2019.
[20] 3GPP TS 36.213 v. 15.2.0, “Physical layer procedures,” Rel. 15, July 2018.
[21] 3GPP TS 38.101-1 v. 16.0.0, “User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone,” Rel. 16, June 2019.
[22] 3GPP TS 38.214 v. 15.6.0, “Physical layer procedures for data,” Rel. 15, June 2019.
[23] B. M. Baas, "A generalized cached-FFT algorithm," Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., Philadelphia, PA, 2005, pp. v/89-v/92 Vol. 5.
[24] 3GPP TS 38.802 v. 14.2.0, “Study on new radio access technology Physical layer aspects,” Rel. 14, Sep 2017.
[25] Chao-Ming Chen, “Channel-Aware Low-Power FFT Processor for 3GPP-LTE OFDMA Transmission,” M.S. thesis, Dept. Elect. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, 2008.
[26] K. Xia, B. Wu, T. Xiong and T. Ye, "A Memory-Based FFT Processor Design With Generalized Efficient Conflict-Free Address Schemes," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 6, pp. 1919-1929, June 2017.
[27] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks through FFTs,” in Proc. ICLR, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top