跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育愷
研究生(外文):Chang, Yu-Kai
論文名稱:利用阻抗分析探討雙層電阻式記憶體之物理機制
論文名稱(外文):Investigating Resistive Switching Mechanism of Bilayer RRAM Using Impedance Analysis
指導教授:侯拓宏
指導教授(外文):Hou, Tuo-Hung
口試委員:連振炘陳佑昇
口試委員(外文):Lien, Chen-HsinChen, Yu-Sheng
口試日期:2020-01-10
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:101
中文關鍵詞:電阻式記憶體阻抗分析可靠度分析及改善
外文關鍵詞:RRAMImpedance AnalysisReliability Analysis and Engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,類神經網路在許多方面展現出色的成果及潛力,相較於傳統馮·諾依曼的計算架構,其數據在讀取與儲存時需不斷往返處理器與記憶體間,因此消耗大量的時間及功率;而類神經網路透過將計算及儲存整合來縮短溝通距離。因此,許多研究則正致力於尋找適合的突觸元件來達成硬體實踐。
  非阻絲形態之電阻式記憶體由於具備突觸特性而受到廣泛的注目,像是在相同的電壓刺激之下可以達到連續的電阻變化。然而,對於高密度陣列之應用,元件可靠度仍然是一個嚴重的問題,特別是在有限的操作次數以及阻態維持的穩定度上;儘管許多物理模型相繼被提出,像是在氧化層中氧缺陷的移動以及載子的儲存等,但缺乏完整明確的物理機制阻礙了我們對元件的了解及開發,其根本的原因來自於微觀世界的變化,像是離子移動或電荷變化,是較困難藉由直流量測的方式來直接觀察,這也驅使我們使用交流訊號之阻抗分析來了解其背後的物理機制。
  在此篇論文中,我們提出了阻抗分析的方法並應用於分析其物理切換機制。而就我們所知,這是第一個將阻抗分析方法應用於非阻絲形態之電阻式記憶體上。在二氧化鈦(TiO2)的元件當中,我們藉由阻抗分析了解其電容及電阻有強烈的相關性,將雙層氧化層之電容率變化詳細地在此篇論文加以討論,並且提出了等效電路模型來描述元件電容及電阻之動態切換的過程,進而應用於可靠度之分析上。我們也發現了在氧化鉭(TaOx)的元件,其不同於二氧化鈦元件之切換機制,我們也對元件特性及阻抗分析進行詳細地分析,並推測其可能之物理機制。在論文的最後,我們整理了近幾年關於非阻絲形態之電阻式記憶體的相關研究,將其元件之電流密度與阻態維持之可靠度加以整理及分析,提供我們在這個領域更進一步的了解。
Recently, neuromorphic computing has shown attractive potential as a next-generation computing paradigm to improve conventional computing algorithms based on the von Neumann architecture, which faces challenges in transporting data between processor and memory. Brain-inspired architecture shortens the communication by distributing the computing in neurons and storage in synapses. As a result, many researchers are looking for promising solid-state synaptic devices for hardware implementation.
Non-filamentary resistive random-access memory (RRAM) has been attracting great attention due to its promising synaptic features, such as continuous resistance change (analog weight update) under the repeated voltage stimuli. However, device reliability, especially retention and endurance, remains an issue for the implementation in a large-scale array. Different switching mechanisms, such as charge-trapping and oxygen vacancies migration, have been proposed to explain the switching behavior. The ambiguous physical mechanism hinders device engineering from improving reliability further. The more detailed understanding of microscopic-level phenomena, such as dynamic evolutions of ionic movement and charge trapping, cannot be achieved through the DC electrical measurement, which only gives the resistance information in any electrical state. This motivates us to investigate non-filamentary switching by using AC impedance analysis.
In this thesis, we developed a methodology of impedance analysis that unravels the underlying resistive switching mechanism. To the best of our knowledge, this is the first detailed impedance analysis on the non-filamentary RRAM. A strong correlation between capacitance and resistance based on TiO2-based devices is demonstrated. The systematic extraction of the permittivity of the bilayer stack is also discussed in detail. Moreover, an impedance model is proposed to describe the switching dynamics of the capacitance and resistance change, and its application on reliability analysis is also shown by engineering different device designs. A different non-filamentary RRAM system based on TaOx-based devices is also investigated. In the end, we benchmark various non-filamentary RRAM devices reported in the literature and discuss the correlation between the device current density and reliability characteristics. This might provide an engineering pathway towards better reliability characteristics.
摘要 I
Abstract III
Acknowledgments V
Contents VI
Figure Captions IX
Table List XIX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Resistive Random-access Memory 2
1.3 Non-filamentary RRAM 4
1.4 Impedance Spectroscopy 8
1.5 Motivation 10
Chapter 2 Impedance Analysis 11
2.1 Introduction 11
2.2 TiO2-based Switching Mechanism 12
2.2.1 Resistive Switching Mechanism 12
2.2.2 Area-dependence for TiO2-based Devices 15
2.2.3 Correlation between Resistance and Capacitance 16
2.3 Impedance and Measurement 17
2.3.1 Impedance 17
2.3.2 Measurement Setup 21
2.3.3 Standard Measurement Results 23
2.4 Compact Model 27
2.4.1 Model Setup 27
2.4.2 Permittivity Extraction 33
2.5 HfO2-TiO2 Comparison 39
2.5.1 TiO2 Thickness Effect 39
2.5.2 HfO2 Thickness Effect 40
2.5.3 Al-Doped Effect on TiO2 41
2.5.4 Top Electrode 42
2.6 Summary 43
Chapter 3 Device Engineering 44
3.1 Introduction 44
3.2 Reliability Characterization 44
3.2.1 Retention 45
3.2.2 Endurance 49
3.3 Device Engineering 51
3.3.1 Barrier Layer Material 51
3.3.2 TiO2 Thickness Effect 52
3.3.3 HfO2 Thickness Effect 54
3.3.4 Al-doping Effect on TiO2 56
3.3.5 Top Electrode 58
3.4 Summary 59
Chapter 4 TiO2-based and TaOx-based Devices 61
4.1 Introduction 61
4.2 TaOx-based Devices 62
4.2.1 DC I-V Characteristics 62
4.2.2 Area-dependence for TiO2-based and TaOx-based Devices 64
4.3 Impedance Analysis of TaOx-based Devices 68
4.3.1 Impedance Measurement Results 68
4.3.2 Impedance Analysis for TaOx-based Devices 71
4.3.3 TiO2-based and TaOx-based Devices Impedance Results 73
4.4 Characteristics Comparison for TiO2-based and TaOx-based Devices 75
4.4.1 AC Switching Speed and Retention 75
4.4.2 Retention 78
4.4.3 Endurance 83
4.5 Switching Mechanism for TaOx-based Switching Layer Devices 84
4.6 Summary 85
Chapter 5 Conclusion and Future Outlook 87
5.1 Conclusion 87
5.2 Future Outlook 89
Reference 94
Vita 101
[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot, "Mastering the game of Go with deep neural networks and tree search," nature, vol. 529, no. 7587, p. 484, 2016.
[2] S. Yu, "Neuro-inspired computing with emerging nonvolatile memorys," Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, 2018.
[3] S. Yu, Neuro-inspired computing using resistive synaptic devices. Springer, 2017.
[4] B. Hudec, C.-W. Hsu, I.-T. Wang, W.-L. Lai, C.-C. Chang, T. Wang, K. Fröhlich, C.-H. Ho, C.-H. Lin, and T.-H. Hou, "3D resistive RAM cell design for high-density storage class memory—a review," Science China Information Sciences, vol. 59, no. 6, p. 061403, 2016.
[5] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 158-165.
[6] L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar, D. Wouters, Y. Y. Chen, and M. Komura, "Understanding of the intrinsic characteristics and memory trade-offs of sub-μA filamentary RRAM operation," in 2013 Symposium on VLSI Technology, 2013: IEEE, pp. T162-T163.
[7] S. Subhechha, B. Govoreanu, Y. Chen, S. Clima, K. De Meyer, J. Van Houdt, and M. Jurczak, "Extensive reliability investigation of a-VMCO nonfilamentary RRAM: Relaxation, retention and key differences to filamentary switching," in 2016 IEEE International Reliability Physics Symposium (IRPS), 2016: IEEE, pp. 6C-2-1-6C-2-5.
[8] Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, and A. Belmonte, "Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current," in 2013 IEEE International Electron Devices Meeting, 2013: IEEE, pp. 10.1. 1-10.1. 4.
[9] C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, "Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory," in 2013 Symposium on VLSI Technology, 2013: IEEE, pp. T166-T167.
[10] K. M. Kim, J. Zhang, C. Graves, J. J. Yang, B. J. Choi, C. S. Hwang, Z. Li, and R. S. Williams, "Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application," Nano letters, vol. 16, no. 11, pp. 6724-6732, 2016.
[11] J. H. Yoon, S. J. Song, I. H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, and C. S. Hwang, "Highly uniform, electroforming‐free, and self‐rectifying resistive memory in the Pt/Ta2O5/HfO2‐x/TiN structure," Advanced Functional Materials, vol. 24, no. 32, pp. 5086-5095, 2014.
[12] B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y. Chen, S. Clima, V. Paraschiv, H. Hody, C. Adelmann, and M. Popovici, "A-VMCO: A novel forming-free, self-rectifying, analog memory cell with low-current operation, nonfilamentary switching and excellent variability," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015: IEEE, pp. T132-T133.
[13] K. Baek, S. Park, J. Park, Y.-M. Kim, H. Hwang, and S. H. Oh, "In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface," Nanoscale, vol. 9, no. 2, pp. 582-593, 2017.
[14] X. L. Shao, L. W. Zhou, K. J. Yoon, H. Jiang, J. S. Zhao, K. L. Zhang, S. Yoo, and C. S. Hwang, "Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory," Nanoscale, vol. 7, no. 25, pp. 11063-11074, 2015.
[15] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[16] J. McCann and S. Badwal, "Equivalent circuit analysis of the impedance response of semiconductor/electrolyte/counterelectrode cells," Journal of The Electrochemical Society, vol. 129, no. 3, pp. 551-559, 1982.
[17] H. Li, T. Chen, S. Hu, P. Liu, Y. Liu, P. Lee, X. Wang, H. Li, and G. Lo, "Study of multilevel high-resistance states in HfOx-based resistive switching random access memory by impedance spectroscopy," IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2684-2688, 2015.
[18] M. H. Lee, K. M. Kim, G. H. Kim, J. Y. Seok, S. J. Song, J. H. Yoon, and C. S. Hwang, "Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy," Applied Physics Letters, vol. 96, no. 15, p. 152909, 2010.
[19] J.-W. Yoon, J. H. Yoon, J.-H. Lee, and C. S. Hwang, "Impedance spectroscopic analysis on effects of partial oxidation of TiN bottom electrode and microstructure of amorphous and crystalline HfO2 thin films on their bipolar resistive switching," Nanoscale, vol. 6, no. 12, pp. 6668-6678, 2014.
[20] Y. Okawa, H. Norimatsu, H. Suto, and M. Takayanagi, "The negative capacitance effect on the CV measurement of ultra thin gate dielectrics induced by the stray capacitance of the measurement system," in International Conference on Microelectronic Test Structures, 2003., 2003: IEEE, pp. 197-202.
[21] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, and S. Han, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature nanotechnology, vol. 5, no. 2, p. 148, 2010.
[22] S. Dhar and A. H. Marshak, "Static dielectric constant of heavily doped semiconductors," Solid-state electronics, vol. 28, no. 8, pp. 763-766, 1985.
[23] L. Technologies, Electrical Modeling of Polymers. 2017.
[24] K. Technologies, Impedance Measurement Handbook - 6th Edition - Appliaction Note, 2016.
[25] K. J. Yang and C. Hu, "MOS capacitance measurements for high-leakage thin dielectrics," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500-1501, 1999.
[26] Y. Lu, S. Hall, L. Tan, I. Mitrovic, W. Davey, B. Raeissi, O. Engström, K. Cherkaoui, S. Monaghan, and P. Hurley, "Leakage current effects on C-V plots of high-k metal-oxide-semiconductor capacitors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 1, pp. 352-355, 2009.
[27] Z. Luo and T. Ma, "A new method to extract EOT of ultrathin gate dielectric with high leakage current," IEEE electron device letters, vol. 25, no. 9, pp. 655-657, 2004.
[28] A. Nara, N. Yasuda, H. Satake, and A. Toriumi, "Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide," IEEE transactions on semiconductor manufacturing, vol. 15, no. 2, pp. 209-213, 2002.
[29] F. Mondon and S. Blonkowski, "Electrical characterisation and reliability of HfO2 and Al2O3–HfO2 MIM capacitors," Microelectronics Reliability, vol. 43, no. 8, pp. 1259-1266, 2003.
[30] G. Lee, B.-K. Lai, C. Phatak, R. S. Katiyar, and O. Auciello, "Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices," Journal of Applied Physics, vol. 114, no. 2, p. 027001, 2013.
[31] Y. Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G. S. Kar, A. Fantini, G. Groeseneken, D. J. Wouters, and M. Jurczak, "Endurance/Retention Trade-off on HfO2/Metal Cap 1T1R Bipolar RRAM," IEEE Transactions on electron devices, vol. 60, no. 3, pp. 1114-1121, 2013.
[32] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, and S. Seo, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures," Nature materials, vol. 10, no. 8, p. 625, 2011.
[33] K. V. Egorov, D. S. Kuzmichev, P. S. Chizhov, Y. Y. Lebedinskii, C. S. Hwang, and A. M. Markeev, "In Situ Control of Oxygen Vacancies in TaOx Thin Films via Plasma-Enhanced Atomic Layer Deposition for Resistive Switching Memory Applications," ACS applied materials & interfaces, vol. 9, no. 15, pp. 13286-13292, 2017.
[34] X. Li, H. Wu, B. Gao, W. Wu, D. Wu, N. Deng, J. Cai, and H. Qian, "Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices," Nanotechnology, vol. 27, no. 30, p. 305201, 2016.
[35] Y.-S. Chen, H.-Y. Lee, P.-S. Chen, W.-S. Chen, K.-H. Tsai, P.-Y. Gu, T.-Y. Wu, C.-H. Tsai, S. Rahaman, and Y.-D. Lin, "Novel Defects-Trapping TaOx/HfOx RRAM With Reliable Self-Compliance, High Nonlinearity, and Ultra-Low Current," IEEE Electron Device Letters, vol. 35, no. 2, pp. 202-204, 2013.
[36] J. Y. Kwon, J. H. Park, and T. G. Kim, "Self-rectifying resistive-switching characteristics with ultralow operating currents in SiOxNy/AlN bilayer devices," Applied Physics Letters, vol. 106, no. 22, p. 223506, 2015.
[37] J. H. Yoon, K. M. Kim, S. J. Song, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park, Y. J. Kwon, X. Shao, and C. S. Hwang, "Pt/Ta2O5/HfO2− x/Ti resistive switching memory competing with multilevel NAND flash," Advanced Materials, vol. 27, no. 25, pp. 3811-3816, 2015.
[38] Q. Luo, X. Xu, T. Gong, H. Lv, D. Dong, H. Ma, P. Yuan, J. Gao, J. Liu, and Z. Yu, "8-layers 3D vertical RRAM with excellent scalability towards storage class memory applications," IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 2.7. 1-2.7. 4.
[39] B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima, H. Hody, V. Paraschiv, I. Radu, and A. Franquet, "Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell," in 2013 IEEE International Electron Devices Meeting, 2013: IEEE, pp. 10.2. 1-10.2. 4.
[40] J. H. Yoon, D. E. Kwon, Y. Kim, Y. J. Kwon, K. J. Yoon, T. H. Park, X. L. Shao, and C. S. Hwang, "The current limit and self-rectification functionalities in the TiO2/HfO2 resistive switching material system," Nanoscale, vol. 9, no. 33, pp. 11920-11928, 2017.
[41] Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu, P. Yuan, H. Ma, D. Dong, H. Lv, and S. Long, "Self-rectifying and forming-free resistive-switching device for embedded memory application," IEEE Electron Device Letters, vol. 39, no. 5, pp. 664-667, 2018.
[42] X. Xu, Q. Luo, T. Gong, H. Lv, S. Long, Q. Liu, S. S. Chung, J. Li, and M. Liu, "Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling," in 2016 IEEE Symposium on VLSI Technology, 2016: IEEE, pp. 1-2.
[43] H. Ma, X. Zhang, F. Wu, Q. Luo, T. Gong, P. Yuan, X. Xu, Y. Liu, S. Zhao, and K. Zhang, "A Self-Rectifying Resistive Switching Device Based on HfO2/TaOx Bilayer Structure," IEEE Transactions on Electron Devices, vol. 66, no. 2, pp. 924-928, 2018.
[44] W. Song, W. Wang, H. K. Lee, M. Li, V. Y.-Q. Zhuo, Z. Chen, K. J. Chui, J.-C. Liu, I.-T. Wang, and Y. Zhu, "Analog switching characteristics in TiW/Al2O3/Ta2O5/Ta RRAM devices," Applied Physics Letters, vol. 115, no. 13, p. 133501, 2019.
[45] D.-j. Seong, J. Park, N. Lee, M. Hasan, S. Jung, H. Choi, J. Lee, M. Jo, W. Lee, and S. Park, "Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications," in 2009 IEEE International Electron Devices Meeting (IEDM), 2009: IEEE, pp. 1-4.
[46] S. Jung, M. Siddik, W. Lee, J. Park, X. Liu, J. Woo, G. Choi, J. Lee, N. Lee, and Y. H. Jang, "Thermally-assisted Ti/Pr0.7Ca0.3MnO3 ReRAM with excellent switching speed and retention characteristics," in 2011 International Electron Devices Meeting, 2011: IEEE, pp. 3.6. 1-3.6. 4.
[47] K.-C. Chuang, C.-Y. Chu, H.-X. Zhang, J.-D. Luo, W.-S. Li, Y.-S. Li, and H.-C. Cheng, "Impact of the Stacking Order of HfOx and AlOx Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics," IEEE Journal of the Electron Devices Society, vol. 7, pp. 589-595, 2019.
[48] T.-L. Tsai, Y.-H. Lin, and T.-Y. Tseng, "Resistive Switching Characteristics of WO3/ZrO2 Structure With Forming-Free, Self-Compliance, and Submicroampere Current Operation," IEEE Electron Device Letters, vol. 36, no. 7, pp. 675-677, 2015.
電子全文 電子全文(網際網路公開日期:20250111)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top