跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巴拉
研究生(外文):Balakumar Muniandi
論文名稱:充分地自動化的控制拓撲結構為渦輪促進蓄電池充電器
論文名稱(外文):Fully automated control topology for Turbo-boost battery chargers
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:郭斯彥黃立仁陳富強王清松洪崇智
口試委員(外文):Kuo, Sy-YenHuang, RyanChen, Fu-ChiangWang, Ching-SungHung, Chung-chih
口試日期:2019-11-8
學位類別:博士
校院名稱:國立交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:109
中文關鍵詞:閉環控制全自動機械的偵查效率自已校準了放電電流充分地自動化的控制拓撲結構恆定的當前方式,恆定的電壓方式
外文關鍵詞:closed loop controlfully automatic detectionefficiencyself-calibrated discharging currentfully automated control topologyconstant current modeconstant voltage mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本博士論文提出了全自動控制之電池充電器。此電池充電器可在沒有負迴授的運作前提下提供超增壓運作模式、亦可在使用閉迴路迴授的運作下進行自動系統負載偵測。利用超增壓運作模式的操作,在充電時主電力將來自變壓器、將電池的使用降到最低,有效達到降低電池的充放次數、達到延長電池壽命的效果。除此之外,為了讓全自動控制相容於任何電池充電器,此控制方法可根據系統變化進行自動系統負載偵測、並且在不須透過通訊協議對電池充電電路與系統之間進行協調的情況下進行超增壓運作模式。全自動控制同時搭載防止電池過充的防護、並且包含偵測降壓與超升壓模式間平滑膜式轉換之機制。此實驗晶片採用標準0.25μm CMOS製程,在超升壓模式達到94.58%效率、在降壓模式操作時可達最高97%效率。
A Fully Automated Control (FAC) battery charger is proposed in this dissertation. The FAC battery charger that provides turbo-boost operation and fully automated detection without any feedback from the system is discussed. It uses closed-loop control for automatic system load detection. The advantages include minimum usage of battery power and maximum power from the adapter during the battery charger operating in turbo-boost mode. As such, the charge-discharge cycles of battery is reduced, thereby increasing the battery life time. Furthermore, the FAC battery charger detects the system load and adaptively adjust the battery discharging current according to the varying system load. Moreover, FAC battery
charger does not need any communication protocol to handshake between the battery charger and the system to operate in turbo-boost operation rather the battery charger performs fully automatic detection, thus the FAC battery charger is applicable to any kind of battery chargers with the turbo boost mode support. Additionally, a battery protection circuitry is also included to avoid battery over discharge. FAC battery charger further includes a control logic with the voltage buffer which ensures the smooth transition from buck charge mode to boost discharge mode. The test chip was fabricated using a 0.25μm CMOS process, with a maximum efficiency of 94.58% when the charger operates in the turbo boost mode, and achieves 97% maximum efficiency when the charger operates in buck charge mode.
摘 要 i
ABSTRACT ii
Acknowledgement iii
Contents iv
Figure Captions vi
Table Captions ix
Chapter 1 1
Introduction 1
1.1 Background of battery charger system 1
1.2 Basics of Li-ion battery 1
1.3 Charging Topologies 2
1.4 Power delivery states in battery chargers 4
1.5 Thesis organization 10
Chapter 2 11
Prior Arts and Design Goal 11
2.1 Prior arts of the turbo-boost battery chargers 11
2.1.1 Narrow voltage DC (NVDC) Charger 11
2.1.2 Hybrid power buck-boost (HPBB) configuration 15
2.1.3 Hybrid power boost (HPB) Topology. 17
2.1.4 Design goal 21
Chapter 3 26
Proposed Fully Automated Topology for Turbo-boost Battery Chargers 26
3.1 FAC Architecture 26
3.2 Operation of FAC architecture 27
3.3 Control method of FAC topology 30
3.4 Battery protection function 33
Chapter 4 36
Stability Analysis of Turbo Boost Battery Charger 36
4. 1. Small signal analysis of switching battery charger 36
4. 2. Closed loop analysis 43
4. 3. Simulation with PSIM 57
4. 3. 1. Simulation of HPB battery charger 63
4. 4. Small signal analysis of turbo-boost battery charger 66
Chapter 5 71
Circuit Implementations 71
5.1 FAC turbo-boost controller 71
5.2 Watch-dog Timer 75
5.3 FAC Control Logic 77
Chapter 6 80
Experimental Results 80
6.1 Chip micrograph 80
6.2 Buck charge mode 81
6.3 Boost mode 83
Chapter 7 92
Conclusion and Future Work 92
7.1 Conclusion 92
7.2 Future work 92
REFERENCE 94
REFERENCE

[1] M. Chen and G. A. Rincon-Mora, "Accurate, compact, and power-efficient Li-ion battery
charger circuit," IEEE Transactions on circuits and systems II: Express briefs, vol. 53,
no. 11, pp. 1180-1184, Nov. 2006.
[2] D. Linden and T. B. Reddy, Handbook of batteries. New York, NY, USA: McGraw-hill,
2002, ch. 35.
[3] Texas Instruments, “Lithium ion charge management IC with integrated switching
controller,” 2010 [Online]. Available: http://focus.ti. com/lit/ds/symlink/bq2954.pdf.
[4] Y. C. Chuang and Y. L. Ke, "High efficiency battery charger with a buck
zero-current-switching pulse-width-modulated converter," IET Power Electronics, vol. 1,
no. 4, pp. 433-444, December 2008.
[5] M. G. Jeong, S. H. Kim and C. Yoo, "Switching battery charger integrated circuit for
mobile devices in a 130-nm BCDMOS process," IEEE Transactions on Power
Electronics, vol. 31, no. 11, pp. 7943-7952, Nov. 2016.
[6] Texas Instruments, “bq24780S 1-to 4-Cell hybrid power boost mode battery charger
controller with power and processor hot monitoring,” SLUSC93A-APRIL 2015.
[7] Intel Corporation, “Dynamic response improvement of hybrid power boost technology,”
U.S Patent No. 9261934 B2,
[8] Intersil, “Hybrid power boost (HPB) and narrow VDC (NVDC) configurations combo
battery charger With SMBus interface,” ISL95520/21.
[9] Texas Instruments, “Closed-loop compensation design of a synchronous switching
charger using bq2472x/3x,” SLUA371, Application report, Sept. 2006.
[10] X. Liang, P. Li and G. Jayakanthan, "Evaluation of narrow vdc-based power
delivery architecture in mobile computing system," IEEE Transactions on Industry
Applications, vol. 47, no. 6, pp. 2539-2548, Nov.-Dec. 2011.

104

[11] Texas Instruments, “A discrete narrow voltage DC/DC charger solution for
multicell Batteries” SLUA620, Application report, December 2011.
[12] Texas Instruments, “Design of a narrow VDC (NVDC) system charger voltage
regulator using bq24721/30” SLUA412- January 2007.
[13] Yevgen Barsukov, Jinrong Qian, Battery power management for portable devices.
Boston: Artech house, 2013, Ch. 2.
[14] Qiong M. Li, Jinrong Qian, Suheng Chen, “Apparatus and method for optimizing
use of NVDC chargers” U.S. Patent No. 20140229748, Feb 2013.
[15] Alexander B. Uan-Zo-Li, Patricke K. Leung, Tod F. Schiff, Scot Lester, “Power
delivery system” U.S. Patent No. 20150340897 A1, Nov.2015.
[16] Monolithic Power Systems, “2A Switching charger with NVDC power path
management for single cell Li+ battery,” MP2625B.
[17] Fairchild Semi, “Consideration of power MOSFETS in fast charger design,”
AN-5233.
[18] Texas Instruments, “bq 24715 2-3 cell NVDC-1 battery charger controller with
ultra-fast transient response and high light-load efficiency” SLUSBD1B- March 2013.

[19] Michelle Li, “Multi-cell battery charger design considerations” BMS deep dive-
Dallas 2012.

[20] Rover. W. Erickson and D. Masimovic, “Fundamentals of power electronics,” 2nd
ed., Norwell, MA: Kluwer academic publishers, 2001.
[21] Mao Ye, Richard Stair, Suheng Chen, Jinrong Qian, Qiong M. Li, “Control method
of hybrid power battery charger,” Us. Patent No. 20120139345 A1, 2012.
[22] Mao Ye, Jinrong Qian, Suheng Chen, Richard Stair, “Method for limiting battery
discharging current in battery charger and discharger circuit,” U.S. Patent No.
20120139500 A1, 2012.
[23] Texas Instruments, “Turbo-boost charger supports CPU turbo mode,” SLYT448,

105
Analog applications journal, 2012.
[24] Texas Instruments, “bq24735 1-to 4-Cell Li+ battery SMBus charger controller for
supporting turbo boost mode with N-channel power MOSEFET selector”
SLUSAK9B-September 2011.
[25] Sensoray, Jin Lamberson “Single and multistage watchdog timers,” Application
note 2012.
[26] Texas Instruments, “TMS320C5515/14/05/04/VC05/VC04” DSP timer/watchdog
timer.” User’s guide.
[27] ATMEL, “8-bit Microcontroller with 1K bytes in-system programmable flash,”
Application note, Rev. 2535J-AVR-08/10.
[28] Ke-Horng Chen, "Switching-based battery charger," in Power Management
Techniques for Integrated Circuit Design, 1st, Wiley-IEEE press, 2016.
[29] R. H. Peng, et al., "Switching-based charger with continuously built-in resistor
detector (CBIRD) and analog multiplication-division unit (AMDU) for fast charging in
Li-Ion battery," 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, 2013, pp.
157-160.
[30] P. J. Liu and C. H. Yen, "A fast-charging switching-based charger with adaptive
hybrid duty cycle control for multiple batteries," IEEE Transactions on Power
Electronics, vol. 32, no. 3, pp. 1975-1983, March 2017.
[31] C. Grecu, C. Iordache and M. Pantazică, "Host emulator for next generation battery
chargers," 2016 IEEE 22nd International Symposium for Design and Technology in
Electronic Packaging (SIITME), Oradea, 2016, pp. 78-81.
[32] T. C. Huang, R. H. Peng, T. W. Tsai, K. H. Chen and C. L. Wey, "Fast charging and
high efficiency switching-based charger with continuous built-in resistance detection and
automatic energy deliver control for portable electronics," IEEE Journal of Solid-State
Circuits, vol. 49, no. 7, pp. 1580-1594, July 2014.

106

[33] Suet-Chui Koon, Yat-Hei Lam and Wing-Hung Ki, "Integrated charge-control
single-inductor dual-output step-up/step-down converter," 2005 IEEE International
Symposium on Circuits and Systems, pp. 3071-3074 vol. 4, 2005.
[34] M. G. Jeong, S. H. Kim and C. Yoo, "Switching Battery Charger Integrated Circuit
for Mobile Devices in a 130-nm BCDMOS Process," IEEE Transactions on Power
Electronics, vol. 31, no. 11, pp. 7943-7952, Nov. 2016.
[35] Texas Instruments, “bq24780S 1- to 4-Cell Hybrid Power Boost Mode Battery
Charge Controller with Power and Processor Hot Monitoring” SLUSC27C –April
2015–Revised March 2017.
[36] Y. Jung et al., "A Fast and Highly Accurate Battery Charger With Accurate Built-In
Resistance Detection," in IEEE Transactions on Power Electronics, vol. 33, no. 12, pp.
10051-10054, Dec. 2018.
[37] K. Chung, S. Hong and O. Kwon, "A Fast and Compact Charger for an Li-Ion
Battery Using Successive Built-In Resistance Detection," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 161-165, Feb. 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於行動裝置之電源管理方案:交流/直流電壓轉換、無線功率傳輸、數位線性穩壓器、封包追蹤、與D類音頻放大器
2. 獵能系統之最大功率點追踪的低功耗擾動觀察技術
3. 改善大型陣列元件靜電防護能力的信號控制開關
4. 用於驅動單晶片上650V增強型氮化鎵功率開關之單一積體化12V氮化鎵閘極驅動器以達到95.3%高效率以及35.3W/mm2的轉換能量密度
5. 在300毫安培時具有98%效率、在10毫安培時具有95%效率的具有10微秒快速暫態反應和低功耗的數位DC-DC轉換器
6. 應用於通用序列匯流排C型裝置之廣泛輸入輸出電壓的雙向升降壓充電器
7. 具有粗調和微調電感技術之6.78兆赫茲和90%效率氮化鎵E類共振式無線電力傳輸系統
8. 適應式固定導通時間電容調變之高效率脈衝寬度調變及脈衝頻率調變降壓型直流對直流轉換器
9. 高帶寬基準跟踪低壓差線性穩壓器
10. 應用於能量採集系統之高電壓轉比、高效率、雙倍責任週期飛馳電容轉換器
11. 23.6 ppm /ºC的單片集成GaN參考電壓設計的可操作溫度範圍為-50至200ºC、電源電壓範圍為3.9至24V
12. 應用於音訊放大器具弦波參考電壓追蹤功能之單電感雙極性輸出直流-直流電源轉換器
13. 使用頻率鎖定邊界傳導模式控制於零電壓切換之基於全氮化鎵交錯無橋功率因數校正轉換器達到99.1%高功率因數與98.9%高效率
14. 安全數位卡主機控制器之限制隨機驗證環境建構與程式驗證
15. 改良帶有阻尼因子控制頻率補償用於快速響應時間和寬負載電容變化之高解析度三級運算放大器