|
[1] JamesonLToole, SerdarColak, FahadAlhasoun, AlexandreEvsukoff, andMartaC Gonzalez. 2014. The path most travelled: mining road usage patterns from massive call data. arXiv preprint arXiv:1403.0636 (2014). [2] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. Urban sensing using mobile phone network data: A survey of research. ACM Comput. Surv., 47(2):25:1– 25:20, November 2014. [3] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):38, 2014. [4] Mi Diao, Yi Zhu, Joseph Ferreira, and Carlo Ratti. 2015. Inferring individual daily activities from mobile phone traces: A Boston example. Environment and Planning B: Planning and Design (2015). https://doi.org/10.1177/0265813515600896 arXiv:http://epb.sagepub.com/content/early/2015/09/15/0265813515600896.full.pd f+html [5] YanLeng, AlejandroNoriega, Alex’Sandy’Pentland, IraWinder, NinaLutz, and Luis Alonso. 2016. Analysis of Tourism Dynamics and Special Events through Mobile Phone Metadata. arXiv preprint arXiv:1610.08342 (2016). [6] IvaBojic, EmanueleMassaro, AlexanderBelyi, StanislavSobolevsky, andCarlo Ratti. 2015. Choosing the right home location definition method for the given dataset. CoRR abs/1510.03715 (2015). http://arxiv.org/abs/1510.03715 [7] Lauren Alexander, Shan Jiang, Mikel Murga, and Marta C Gonzá lez. 2015. Origin– destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies (2015). [8] KevinSKung, KaelGreco, StanislavSobolevsky, andCarloRatti.2014.Exploring universal patterns in human home-work commuting from mobile phone data. (2014). [9] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. 2014. Urban Sensing Using Mobile Phone Network Data: A Survey of Research. ACM Comput. Surv. 47, 2, Article 25 (Nov. 2014), 20 pages. https://doi.org/10.1145/2655691 [10] Shan Jiang, Joseph Ferreira Jr, and Marta C Gonzá lez. [n. d.]. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. [11] ChristianMSchneider, VitalyBelik, ThomasCouronné , ZbigniewSmoreda,and Marta C González. 2013. Unravelling daily human mobility motifs. Journal of The Royal Society Interface 10, 84 (2013), 20130246. [12] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Under- standing individual human mobility patterns. nature 453, 7196 (2008), 779. - 41 - [13] Xin Lu, Erik Wetter, Nita Bharti, Andrew J Tatem, and Linus Bengtsson. 2013. Approaching the limit of predictability in human mobility. Scientific reports 3 (2013), srep02923. [14] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):38, 2014. [15] Michael Batty, Kay W Axhausen, Fosca Giannotti, Alexei Pozdnoukhov, Armando Bazzani, Monica Wachowicz, Georgios Ouzounis, and Yuval Portugali. Smart cities of the future. The European Physical Journal Special Topics, 214(1):481–518, 2012. [16] Rein Ahas, Siiri Silm, Olle Järv, Erki Saluveer, and Margus Tiru. Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1):3–27, 2010. [17] Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and Carlo Ratti. Real-time urban monitoring using cell phones: A case study in rome. Intelligent Transportation Systems, IEEE Transactions on, 12(1):141–151, 2011. [18] Santi Phithakkitnukoon, Teerayut Horanont, Giusy Di Lorenzo, Ryosuke Shibasaki, and Carlo Ratti. Activity-aware map: Identifying human daily activity pattern using mobile phone data. In Human Behavior Understanding, pages 14–25. Springer, 2010. [19] Shan Jiang, Gaston A Fiore, Yingxiang Yang, Joseph Ferreira Jr, Emilio Frazzoli, and Marta C González. A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, page 2. ACM, 2013. [20] Kevin S Kung, Kael Greco, Stanislav Sobolevsky, and Carlo Ratti. Exploring universal patterns in human home-work commuting from mobile phone data. 2014. [21] Lishan Sun, Liya Yao, Shuwei Wang, Jing Qiao, and Jian Rong. Properties analysis on travel intensity of land use patterns. Mathematical Problems in Engineering, 2014, 2014. [22] Lauren Alexander, Shan Jiang, Mikel Murga, and Marta C González. Origin– destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 2015. [23] Vincent D Blondel, Adeline Decuyper, and Gautier Krings. A survey of results on mobile phone datasets analysis. EPJ Data Science, 4(1):1–55, 2015. [24] T.-W. Lee Independent component analysis Independent Component Analysis, Springer (1998), pp. 27-66 [25] A. Hyvärinen, J. Karhunen, E. Oja Independent Component Analysis, Vol. 46, John Wiley & Sons (2004) - 42 -
[26] Xu Huang. An Improved FastICA Algorithm for Blind Signal Separation and its Application [27] Yan Leng and Haris Koutsopoulos and Jinhua Zhao. 2018. Profiling presence patterns and segmenting user locations from cell phone data.cs.SI. arXiv.1805.12208
|