跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱珮寧
研究生(外文):Chiu, Pei-Ning
論文名稱:統計預編碼方法應用於3GPP毫米波通訊與雙極化天線系統
論文名稱(外文):Statistical Precoding for 3GPP and Dual-Polarized mmWave Systems
指導教授:林源倍
指導教授(外文):Lin, Yuan-Pei
口試委員:王晉良趙啟超蔡尚澕
口試委員(外文):Wang, Chin-LiangChao, Chi-ChaoTsai, Shang-Ho
口試日期:2019-10-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:74
中文關鍵詞:多輸入多輸出之正交分頻多工毫米波通訊通道統計特性混合式預編碼器
外文關鍵詞:MIMO-OFDMmillimeter wave communicationschannel statisticshybrid precoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文,我們考慮統計預編碼方法應用於毫米波通訊系統。預編碼器根據通道的統計特性做設計而不需要即時反饋。我們在本篇論文中分成兩部分來討論統計預編碼器。第一部分,我們考慮統計預編碼方法應用於3GPP TR 38.900 的通道環境。在探討使用者移動的狀況下,模擬結果顯示統計預編碼方法在相同反饋時間下比有完整通道資訊的設計方法更為穩定。在第二部分,我們討論毫米波雙極化天線系統之統計預編碼設計。在單一用戶系統,統計預編碼方法在相同天線陣列面積下,雙極化天線系統和單極化天線系統有相同的表現。然而,在多用戶系統下,雙極化天線系統有較多的天線數量,因此表現比在單極化天線系統佳。
In this thesis, we consider statistical precoding for millimeter wave channels. The precoder depends only on the channel statistics, and instantaneous channel information is not needed. We discuss statistical precoder in two parts. In the first part, we consider application of statistical precoding for the channel described in 3GPP TR 38.900. Simulations are given to show that the performance of proposed algorithm incurs a minor degradation in transmission rate for the channel in 3GPP. In the case of moving users, the performance of statistical precoding is more robust than that of full-CSI systems with the same feedback interval. In the second part, we consider statistical design for mmWave system with dual-polarized antennas. For single-user
systems, we show that with statistical precoding, the performance of dual-polarized system is the same as that of single-polarized system for the same physical space of antennas array. In this case, we can use only the first half (single-polarized) antennas without loss in performance, although there are twice the number of antennas in dual-polarized systems. However, the result
holds only for single-user case. For multi-user systems, the beamformers are not designed using the channel covariance matrices directly and the performance of dual-polarized system is better than that of single-polarized system due to more antennas.
chapter 1. Introduction page 1.
chapter 2. System Model page 7.
chapter 3. Multi-user MIMO-OFDM Hybrid Precoder and Combiner with Limited Feedback page 20.
chapter 4. Statistical Design Based on Dual-Polarized Channel Model page 30.
chapter 5. Simulation result page 42.
chapter 6. Conclusions page 68.
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,”IEEE Comminications Magazine, vol. 49, no. 16, pp. 101-107, Jun. 2011.
[2] C. H. Doan, S. Emami, D. A. Sobel, A. M. Niknejad, and R. W. Brodersen, “Design considerations for 60 GHz CMOS radios,”IEEE Communications Magazine, vol. 42, no. 12, pp. 132-140, Dec. 2004.
[3] O. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, pp. 1499-1513, Mar. 2014.
[4] A. Alkhateeb, R. Heath, and G. Leus, “Achievable Rates of Multi-User Millimeter Wave Systems with Hybrid Precoding,” IEEE Int.Conf. Commun. Workshop, pp. 1232-1237, Jun. 2015.
[5] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 653-656, Dec. 2014.
[6] D. Zhu, B. Li, and P. Liang, “A noval hybrid beamforming algorithm with unified analog beamforming by subspace construction based on partial CSI for massive MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol.
65, no. 2, pp. 594-607, Feb. 2017.
[7] R. Peng, Y. Tian, “Wideband hybrid precoder design in MU-MIMO based on channel angular information,” IEEE SPAWC, Dec. 2017.
[8] X. Yu, J. Zhang, K. B. Letaie, “Alternating Minimization for Hybrid Precoding in Multiuser OFDM mmWave Systems,” 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016.
[9] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, M. Andrews, “An Overview of Limited Feedback in Wireless Communication Systems,” IEEE J. Sel. Areas Commun., vol.26, no.8, pp.1341-1365, Oct. 2008.
[10] J. Choi, V. Raghavan, and D. J. Love, “Limited Feedback Design for the Spatially Correlated Multi-Antenna Broadcast Channel,” IEEE GLOBECOM, Dec. 2013.
[11] A. Alkhateeb, G. Leus, R. W. Heath, Jr., “Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 11 pp. 6481-6494, Jul. 2015.
[12] A. Alkhateeb, R. W. Heath, Jr., G. Leus, “Achievable rates of multi-user millimeter wave systems with hybrid precoding,” IEEE ICCW, Jun. 2015.
[13] A. Alkhateeb, R. W. Heath, Jr., “Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems,” IEEE Transactions on Wireless Communications, vol. 64, no. 5 pp. 1801-1818, May 2016.
[14] S. A. Jafar, A. Goldsmith, “Transmitter optimization and optimality of beamforming for multiple antenna systems,” IEEE Transactions onWireless Communications,
vol. 3, no. 4, pp. 1165-1175, Jul. 2004.
[15] S. Park, J. Park, A. Yazdan, R. W. Heath, “Exploiting Spatial Channel Covariance for Hybrid Precoding in Massive MIMO Systems,” IEEE Trans. Signal Processing, vol. 65, no. 14, pp. 3818-3832, Jul. 2017.
[16] A. Adhikary, J. Nam, J.Y. Ahn, and G. Caire, “Joint Spatial Division and Multiplexing-The Large-Scale Array Regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441-6463, Oct. 2013.
[17] A. Adhikary, E. A. Safadi, M. K. Samimi, R. Wang, G. Caire, T.S. Rappaport, and A.F. Molisch, “Joint Spatial Division and Multiplexing for mm-Wave Channels,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1239-1255, Jun. 2014.
[18] Y.-P. Lin, S.-H. Tsai, “Beamforming with no instantaneous feedback for mmWave transmission,” 2017 IEEE 18th International Workshop on SPAWC, pp. 1-5, 2017.
[19] Y.-P. Lin, “Hybrid MIMO-OFDM Beamforming for Wideband mmWave Channels Without Instantaneous Feedback,” IEEE Trans. Signal Processing, vol. 66, no. 19, pp. 5142-5151, Oct. 2018.
[20] L. Jiang, L. Thiele, and V. Jungnickel, “On the modelling of polarized MIMO channel,” Apr. 2007.
[21] J. Wang, J. Zhao, and X. Gao, “Modeling and Analysis of Polarized MIMO Channels in 3D Propagation Environment,” 21st Annual IEEE Int. Symposium on Personal, Indoor and Mobile Radio Commun., pp. 319-323, Sep. 2010.
[22] J. Song, S. G. Larew, D. J. Love, T. A. Thomas, and A. Ghosh, “Millimeter Wave Beam-Alignment for Dual-Polarized Outdoor MIMO Systems,” IEEE Globecom Workshops, pp. 356-361, Dec. 2013.
[23] A. A. Khalek, R.W. Heath, Jr, S. Rajagopal, S. Abu-Surra, J. Zhang, “Cross-polarization RF precoding to mitigate mobile misorientation and polarization leakage,” IEEE 11th CCNC, 2014.
[24] Y. He, X. Cheng, and G. L. Stuber, “On Polarization Channel Modeling,” IEEE Wireless Communications, pp. 80-86, Feb. 2016.
[25] C. Oestges, M. Guillaud, and M. Debbah, “Multi-Polarized MIMO Communications: Channel Model, Mutual Information and Array Optimization,” IEEE Wireless Communications and Networking Conference, 2007.
[26] M.-T. Dao, V.-A. Nguyen, Y.-T. Im, S.-O. Park, and G. Yoon, “3D Polarized Channel Modeling and Performance Comparison of MIMO Antenna Configurations With Different Polarizations,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2672-2682, Jul. 2011.
[27] R. Bhagavatula, C. Oestges, and R. W. Heath, “A New Double-Directional Channel Model Including Antenna Patterns, Array Orientation, and Depolarization,”
IEEE Trans. Veh. Tech., vol. 59, no. 5, Jun. 2010.
[28] F. Qin, Rakesh, S. Sun, and S. Kang, “Polarization Modelling for MIMO Channel,” 2009 4th Int. Conf. on Commun. and Net. in China, 2009.
[29] S. Jaeckel, K. Borner, L. Thiele, and V. Jungnickel, “A Geometric Polarization Rotation Model for the 3-D Spatial Channel Model,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5966-5977, Dec. 2012.
[30] K. Satyanarayana, T. Ivanescu, M. El-Hajjar, P.-H. Kuo, A. Mourad, and L. Hanzo, “Hybrid beamforming design for dual-polarised millimetre wave MIMO systems,” Electronics Letters, vol. 54, no. 22, pp. 1257-1258, Nov.
2018.
[31] L. Sung, D. Park, and D.-H. Cho, “Limited Feedback Hybrid Beamforming Based on Dual Polarized Array Antenna,” IEEE Communications Letters, vol. 22, no. 7, pp. 1486-1489, Jul. 2018.
[32] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, , and E. Erkip, “Millimeter Wave Channel Modeling and Cellular Capacity Evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164-1179,
Jun. 2014.
[33] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, S. Sun, “Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design,” IEEE Trans. Commun., vol. 63, no. 9, Sep. 2015.
[34] G. R. Maccartney, T. S. Rappaport, S. Sun, and S. Deng, “Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks,” pp. 2388-2424, Oct. 2015.
[35] S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and J. Park, “Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System,” IEEE J. Sel. Topics in Signal Processing, pp. 454-469,
vol. 10, no. 3, Apr. 2016.
[36] M. K. Samimi, and T. S. Rappaport, “3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design,” IEEE Trans. Microwave Theo. and Tech., vol. 64, no. 7, Jul. 2016.
[37] “Mobile and wireless communications Enablers for the Twenty-twenty Information Society,” METIS Channel Models (D1.4), Jul. 2015.
[38] “Millimeter-Wave Evolution for Backhual and Access ,D5.1: Channel Modeling and Characterization”, Jun. 2014.
[39] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on 3D Channel Model for frequency spectrum above 6GHz (Release 15), document TR 38.900 v15.0.0, 3GPP, Jun. 2018.
[40] P.-H. Lee and Y.-P. Lin, “Hybrid MIMO-OFDM for Downlink Multi-User Communications Over Millimeter Channels with no Instantaneous Feedback,” 2019 IEEE ISCAS, May 2019.
[41] T. Hastie, R. Tibshirani, M. Wainwright, Statistical learning with sparsity: The lasso and generalizations. Boca Raton, FL, USA:CRC Press, 2015.
[42] D. Zhu, J. Choi, and R. W. Heath, Jr., “Two-Dimensional AoD and AoA Acquisition for Wideband Millimeter-Wave Systems With Dual-Polarized MIMO,” IEEE Trans. Wireless Communications, vol. 16, no. 12, Dec. 2017.
[43] G. Calcev, D. Chizhik, B. Goransson, S. Howard, H. Huang, A. Kogiantis, A. F. Molish, A. L. Moustakas, and H. X. D. Reed, “A wideband spatial channel model for system-wide simulations,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 389-403, Mar. 2007.
[44] C. Balanis, Antenna Theory. Wiley, 1997.
[45] S. Kim and B. Shim, “AoD-Based Statistical Beamforming for Cell-Free Massive MIMO Systems,” 2018 IEEE 88th Veh.Tech.Conf., Aug. 2018.
[46] Z. Li, S. Han, and A. F. Molisch, “Optimizing Channel-Statistics-Based Analog Beamforming for Millimeter-Wave Multi-User Massive MIMO Downlink,” IEEE Trans. Wireless Communications, vol. 16, no. 7, Jul. 2017.
[47] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Springer, 1991.
[48] Nokia, Nokia Shanghai Bell, “CSI feedback overhead reduction for MU-MIMO enhancements,” 3GPP TSG RAN WG1 Meeting 95 Spokane, USA, November 12th-16th, 2018.
[49] OPPO, “Enhancements on overhead reduction and rank extension for type II CSI feedback,” 3GPP TSG-RAN WG1 97 Reno, USA, May 13th-17th, 2019.
[50] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Release 15), document TR 25.996 v15.0.0, 3GPP, Jun. 2018.
[51] D. K. Cheng, Field and Wave Electromagnetics, 1989.
[52] P. Schniter and A. Sayeed, “Channel estimation and precoder design for millimeter-wave communications: The sparse way,” Asilomar Conference on Signals, Systems and Computers, 2014.
[53] K. I. Pedersen, P. E. Mogensen, B. H. Fleury , “Spatial Channel Characteristics in Outdoor Environments and their Impact on BS AntennaSystemerformance,” IEEE Vehicular Technology Conference VTC 98. 48th, vol. 2, pp.
719-723, 18-21 May 1998.
[54] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.
[55] X. Zhang, A. F. Molisch, and S. Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4091-4103, Nov. 2005.
[56] F. Sohrabi and W. Yu, “Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501-513, Apr. 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top