|
[1] Karl A Franklin and Eva Lindberg. “Obstructive sleep apnea is a common disorder in the population—a review on the epidemiology of sleep apnea”. In: Journal of thoracic disease 7.8 (2015), p. 1311. [2] Won Lee, Swamy Nagubadi, Meir H Kryger, and Babak Mokhlesi. “Epidemiology of obstructive sleep apnea: a population-based perspective”. In: Expert review of respiratory medicine 2.3 (2008), pp. 349–364. [3] Ching Wei Wang, Amr Ahmed, and Andrew Hunter. “Vision analysis in detecting abnormal breathing activity in application to diagnosis of obstructive sleep apnoea”. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2006, pp. 4469–4473. [4] Ching-Wei Wang, Andrew Hunter, Neil Gravill, and Simon Matusiewicz. “Uncon- strained video monitoring of breathing behavior and application to diagnosis of sleep apnea”. In: IEEE transactions on biomedical engineering 61.2 (2013), pp. 396–404. [5] Ta-Chi Chiang, Meng-Hsiung Tung, Hendrick Rick, Dedi Kurniadi, Zhi-Hao Wang, and Gwo-Jia Jong. “The non-contact respiratory monitoring system using thermal image processing”. In: 2016 3rd International Conference on Green Technology and Sustainable Development (GTSD). IEEE. 2016, pp. 86–92. [6] Carina Barbosa Pereira, Konrad Heimann, Boudewijn Venema, Vladimir Blazek, Michael Czaplik, and Steff en Leonhardt. “Estimation of respiratory rate from ther- mal videos of preterm infants”. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2017, pp. 3818– 3821. [7] Aditya Singh and Victor M Lubecke. “Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags”. In: IEEE Sensors Journal 12.3 (2011), pp. 558–565. [8] Jong Deok Kim, Won Hyuk Lee, Yonggu Lee, Hyun Ju Lee, Teahyen Cha, Seung Hyun Kim, Ki-Min Song, Young-Hyo Lim, Seok Hyun Cho, Sung Ho Cho, et al. “Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates”. In: Royal Society open science 6.6 (2019), p. 190149. [9] Walter Karlen, Srinivas Raman, J Mark Ansermino, and Guy A Dumont. “Mul- tiparameter respiratory rate estimation from the photoplethysmogram”. In: IEEE Transactions on Biomedical Engineering 60.7 (2013), pp. 1946–1953. [10] Mark van Gastel, Sander Stuijk, and Gerard de Haan. “Robust respiration detection from remote photoplethysmography”. In: Biomedical optics express 7.12 (2016), pp. 4941–4957. [11] Stefan Wiesner and Ziv Yaniv. “Monitoring patient respiration using a single optical camera”. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2007, pp. 2740–2743. [12] Carlo Massaroni, Daniel Simões Lopes, Daniela Lo Presti, Emiliano Schena, and Sergio Silvestri. “Contactless monitoring of breathing patterns and respiratory rate at the pit of the neck: A single camera approach”. In: Journal of Sensors 2018 (2018). [13] Prasara Jakkaew and Takao Onoye. “An Approach to Non-contact Monitoring of Respiratory Rate and Breathing Pattern Based on Slow Motion Images”. In: 2019 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE. 2019, pp. 47–51. [14] Fang Zhao, Meng Li, Yi Qian, and Joe Z Tsien. “Remote measurements of heart and respiration rates for telemedicine”. In: PloS one 8.10 (2013). [15] Edgar A Bernal, Lalit K Mestha, and Eribaweimon Shilla. “Non contact monitoring of respiratory function via depth sensing”. In: IEEE-EMBS International Confer- ence on Biomedical and Health Informatics (BHI). IEEE. 2014, pp. 101–104. [16] Kuan-Yi Lin, Duan-Yu Chen, and Wen-Jiin Tsai. “Image-based motion-tolerant re- mote respiratory rate evaluation”. In: IEEE Sensors Journal 16.9 (2016), pp. 3263– 3271. [17] Mauricio Villarroel, João Jorge, Chris Pugh, and Lionel Tarassenko. “Non-contact vital sign monitoring in the clinic”. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE. 2017, pp. 278–285. [18] K Song Tan, Reza Saatchi, Heather Elphick, and Derek Burke. “Real-time vision based respiration monitoring system”. In: 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010). IEEE. 2010, pp. 770–774. [19] Tomáš Lukáč, Jozef Púčik, and Lukáš Chrenko. “Contactless recognition of respira- tion phases using web camera”. In: 2014 24th International Conference Radioelek- tronika. IEEE. 2014, pp. 1–4. [20] Gary R Bradski. “Computer vision face tracking for use in a perceptual user inter- face”. In: (1998). [21] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. “Visual object tracking using adaptive correlation fi lters”. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE. 2010, pp. 2544–2550. [22] Paul Viola and Michael Jones. “Rapid object detection using a boosted cascade of simple features”. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. Vol. 1. IEEE. 2001, pp. I–I. [23] Rainer Lienhart and Jochen Maydt. “An extended set of haar-like features for rapid object detection”. In: Proceedings. international conference on image processing. Vol. 1. IEEE. 2002, pp. I–I. [24] Joao Jorge, Mauricio Villarroel, Sitthichok Chaichulee, Alessandro Guazzi, Sara Davis, Gabrielle Green, Kenny McCormick, and Lionel Tarassenko. “Non-contact monitoring of respiration in the neonatal intensive care unit”. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE. 2017, pp. 286–293. [25] Mark Everingham, Josef Sivic, and Andrew Zisserman. “Hello! My name is... Buff y”– Automatic Naming of Characters in TV Video.” In: BMVC. Vol. 2. 4. 2006, p. 6. [26] Michael H Li, Azadeh Yadollahi, and Babak Taati. “A non-contact vision-based sys- tem for respiratory rate estimation”. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2014, pp. 2119– 2122. [27] Arun Venkitaraman and Vishnu Vardhan Makkapati. “Motion-based segmentation of chest and abdomen region of neonates from videos”. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). IEEE. 2015, pp. 1–5. [28] Rik Janssen, W. Wang, Andreia Moço, and Gerard Haan. “Video-based respiration monitoring with automatic region of interest detection”. In: Physiological measure- ment 37 (Dec. 2015), pp. 100–114. doi: 10.1088/0967-3334/37/1/100. [29] D. Alinovi, G. Ferrari, F. Pisani, and R. Raheli. “Respiratory rate monitoring by maximum likelihood video processing”. In: 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). 2016, pp. 172–177. [30] AP Prathosh, Pragathi Praveena, Lalit K Mestha, and Sanjay Bharadwaj. “Esti- mation of respiratory pattern from video using selective ensemble aggregation”. In: IEEE Transactions on Signal Processing 65.11 (2017), pp. 2902–2916. [31] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, and William Freeman. “Eulerian video magnifi cation for revealing subtle changes in the world”. In: ACM transactions on graphics (TOG) 31.4 (2012), pp. 1–8. [32] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and William T Freeman. “Phase- based video motion processing”. In: ACM Transactions on Graphics (TOG) 32.4 (2013), pp. 1–10. [33] Davide Alinovi, Luca Cattani, Gianluigi Ferrari, Francesco Pisani, and Riccardo Raheli. “Spatio-temporal video processing for respiratory rate estimation”. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. IEEE. 2015, pp. 12–17. [34] Ali Al-Naji and Javaan Chahl. “Remote respiratory monitoring system based on developing motion magnifi cation technique”. In: Biomedical Signal Processing and Control 29 (2016), pp. 1–10. [35] Davide Alinovi, Gianluigi Ferrari, Francesco Pisani, and Riccardo Raheli. “Respira- tory rate monitoring by video processing using local motion magnifi cation”. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 1780– 1784. [36] Gaddisa Olani Ganfure. “Using video stream for continuous monitoring of breath- ing rate for general setting”. In: Signal, Image and Video Processing 13.7 (2019), pp. 1395–1403. [37] Sitthichok Chaichulee, Mauricio Villarroel, Joao Jorge, Carlos Arteta, Gabrielle Green, Kenny McCormick, Andrew Zisserman, and Lionel Tarassenko. “Multi-task convolutional neural network for patient detection and skin segmentation in contin- uous non-contact vital sign monitoring”. In: 2017 12th IEEE International Confer- ence on Automatic Face & Gesture Recognition (FG 2017). IEEE. 2017, pp. 266– 272. [38] João Jorge, Mauricio Villarroel, Sitthichok Chaichulee, Kenny McCormick, and Li- onel Tarassenko. “Data fusion for improved camera-based detection of respiration in neonates”. In: Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diag- nostics. Vol. 10501. International Society for Optics and Photonics. 2018, p. 1050112. [39] Sitthichok Chaichulee, Mauricio Villarroel, Joao Jorge, Carlos Arteta, Kenny Mc- Cormick, Andrew Zisserman, and Lionel Tarassenko. “Cardio-respiratory signal ex- traction from video camera data for continuous non-contact vital sign monitoring using deep learning”. In: Physiological measurement 40.11 (2019), p. 115001. [40] Jorge Brieva, Hiram Ponce, and Ernesto Moya-Albor. “A Contactless Respiratory Rate Estimation Method Using a Hermite Magnifi cation Technique and Convolu- tional Neural Networks”. In: Applied Sciences 10.2 (2020), p. 607. [41] Weixuan Chen and Daniel McDuff . “Deepphys: Video-based physiological measure- ment using convolutional attention networks”. In: Proceedings of the European Con- ference on Computer Vision (ECCV). 2018, pp. 349–365. [42] Mohammad Ghodratigohar, Hamideh Ghanadian, and Hussein Al Osman. “A Re- mote Respiration Rate Measurement Method for Non-Stationary Subjects Using CEEMDAN and Machine Learning”. In: IEEE Sensors Journal 20.3 (2019), pp. 1400– 1410. [43] N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, and D. R. Westen- skow. “Monitoring Breathing via Signal Strength in Wireless Networks”. In: IEEE Transactions on Mobile Computing 13.8 (2014), pp. 1774–1786. [44] Andrea Goldsmith. Wireless communications. Cambridge university press, 2005. Chap. 7, pp. 190–200. [45] Kim E Barrett, Susan M Barman, Scott Boitano, Heddwen L Brooks, et al. Ganong’s review of medical physiology. 2016. [46] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, and William Freeman. “Eulerian video magnifi cation for revealing subtle changes in the world”. In: ACM transactions on graphics (TOG) 31.4 (2012), pp. 1–8. [47] K Sreedhar and B Panlal. “Enhancement of images using morphological transfor- mation”. In: arXiv preprint arXiv:1203.2514 (2012). [48] Satoshi Suzuki et al. “Topological structural analysis of digitized binary images by border following”. In: Computer vision, graphics, and image processing 30.1 (1985), pp. 32–46. [49] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000). [50] X. Li, J. Chen, G. Zhao, and M. Pietikäinen. “Remote Heart Rate Measurement from Face Videos under Realistic Situations”. In: 2014 IEEE Conference on Com- puter Vision and Pattern Recognition. 2014, pp. 4264–4271. [51] Felix Scholkmann, Jens Boss, and Martin Wolf. “An Effi cient Algorithm for Auto- matic Peak Detection in Noisy Periodic and Quasi-Periodic Signals”. In: Algorithms 5 (Nov. 2012), pp. 588–603. doi: 10.3390/a5040588. [52] W. Wang et al. “Discriminative Signatures for Remote-PPG”. In: IEEE Trans. Biomed. Eng. (2019), pp. 1–1. issn: 1558-2531. doi: 10.1109/TBME.2019.2938564. [53] Guillaume Heusch, André Anjos, and Sébastien Marcel. “A Reproducible Study on Remote Heart Rate Measurement”. In: ArXiv abs/1709.00962 (2017).
|