跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭宇佑
研究生(外文):Hsiao, Yu-Yu
論文名稱:以氮化鎵串疊電路驅動的無塵室高效風扇濾網機組
論文名稱(外文):High-efficiency Fan Filter Unit circuit design based on cascode GaN
指導教授:鄭泗東
指導教授(外文):Cheng, Stone
口試委員:陳宗麟程登湖
口試委員(外文):Cehn, Tsung-LinCheng, Teng-Hu
口試日期:2019-10-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:高效功率轉換器風扇濾網機組氮化鎵
外文關鍵詞:GaN based CascodeHigh efficiency power conversionFan Filter Unit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近幾年綠能概念提升,電器產品被逐漸地要求高效率、節能、低汙染、體積小,以及電動車應用、IT系統、直流變頻電器的興起,造成電源電路與變頻器在近年來愈顯重要。而風扇濾網機組(Fan Filter Unit,FFU)被廣泛的應用在醫院、實驗室、半導體、生物技術、製藥廠的無塵室,且耗電量占整個無塵室相當高的占比,耗電非常的龐大。目前市面上依舊是矽開關製成的電子電路為市場主流,但由於矽材料應用在電力電子系統中的材料限制,在不久的將來會有明顯的問題,這意味著高性能次世代功率半導體開關將取代矽開關在市場上的地位。而GaN能隙寬約為Si的3倍,具備可在高溫下工作、高導熱性以及高飽和電子漂移速度等特點,此特性適合製造更高耐壓、頻率的功率元件。因此本研究利用常開型D-mode GaN MIS-HEMT 元件,串疊Low Voltage Si MOSEFT,形成Normally-off Cascode GaN功率元件,應用於風扇濾網機組內電路設計。FFU電路應用中,使用比傳統上切換頻率快的開關頻率驅動,以得到更加小的電流漣波,從而使功率因數更加的趨近於電阻性負載的情況,且在電路內部較佔體積的儲能元件可以縮減尺寸,達到小型、輕量化電路的目的,除此之外,GaN FETs 較低的導通損及切換損,提高了整體的電路效率。本論文比較在不同的功率開關底下,FFU內部主要兩電路拓樸效率,驗證GaN在新興半導體材料下的優勢。
In recent decades every electronic power circuits demands high efficiency, high power, high energy saving, and small in size properties. Fan Filter Unit (FFU) one of the important electronic product are widely used in cleanrooms such includes electronic, automotive, aerospace, biotechnology and medical research cleanrooms and also in hospitals. The low power consumption is one of the important properties to obtain high energy saving in FFU. In recent years Gallium Nitride (GaN) power switches plays vital role in power conversion application and it has extraordinary physical properties and capabilities comparing to Silicon (Si) and Silicon Carbide (SiC) power switches. GaN based Cascode power switches used in this study to design power conversion circuits for FFU application. In Cascode switches a high voltage D-mode GaN HEMT connected in series with low voltage Si MOSFET and LV MOSFET used to control GaN HEMT On-State and Off-States. The switching frequency for the GaN based cascode is higher than the Si MOSFETs switching frequency which achieves smaller current chopping and achieves small in size and weightless power conversion circuits. In addition, GaN HEMTs improve overall power conversion circuit efficiency from the lower conduction loss and switching loss. This study compares the efficiency of the main two power conversion circuits inside the FFU with different power switches of Si MOSFETs and GaN Cascodes and it verifies the advantages of emerging GaN power switches.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 論文架構 4
第二章 ALGAN/GAN HEMT與CASCODE GAN介紹 5
2-1 ALGAN/GAN HEMT 5
2-2 ALGAN/GAN HEMT工作原理 5
2-3 CASCODE GAN 工作原理 6
第三章 工業用風扇濾網機組 11
3-1 風扇濾網機組(FAN FILTER UNIT) 11
3-2 BLDC馬達在FFU優勢 12
3-3 FFU內部電路架構 13
第四章 功率因數校正器 14
4-1 功率因數 14
4-2 功率因數意義 14
4-3 功因修正器 17
4-3-1 橋式整流電路 17
4-3-2 功率因數修正電路 18
4-3-3 控制策略與UC3854晶片 20
4-4 設計PFC電路 22
4-4-1 PFC電路模擬結果 23
4-4-2 Cascode GaN與MOSFET比較 25
4-5 功率損耗分析 27
4-6 PFC 電路實作 30
4-6-1 實驗設備 31
4-6-2功率因數校正器實驗結果 32
4-6-3 震鈴(Ringing) 34
第五章 GAN FET應用於馬達驅動電路 42
5-1 BLDC驅動電路 42
5-1-1 BLDC換相原理與等效電路 42
5-1-2 控制器與驅動晶片 44
5-2 BLDC控制方塊圖及程式流程圖 45
5-3 CASCODE GAN開關驅動電路 46
5-3-1 自舉式電路(Bootstrap Circuit) 46
5-3-2 開關驅動電路設計及注意事項 49
5-3-3 電路佈局優化及封裝型式差異 54
5-4馬達驅動電路損耗分析 55
5-4-1 功率開關導通損耗(Conduction Losses)計算 57
5-4-2 功率開關切換損耗(Conduction Losses)計算 58
5-4-3功率開關總功率損耗(Toatal Power Losses)計算 62
5-5 實作馬達驅動電路 63
5-5-1 實驗使用儀器 63
5-5-2 閘極驅動電路 65
5-6 實際馬達驅動電路損耗計算 70
第六章 結論與未來工作 75
參考資料 76
[1] K. J. Chen, O. Häberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto, Y. Wu, "GaN-on-Si power technology: Devices and applications", IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779-795, Mar. 2017.
[2] X. Huang, J. Feng, W. Du, F. C. Lee, Q. Li, "Design consideration of mhz active clamp flyback converter with GaN devices for low power adapter application", Proc. 2016 IEEE Appl. Power Electron. Conf. Expo., pp. 2334-2341, Mar. 2016.
[3] J. Delaine, P. Olivier, D. Frey, K. Guepratte, "High frequency DC–DC converter using GaN device", Proc. IEEE Appl. Power Electron. Conf., pp. 1754-1761, 2012.
[4] T. Morita, S. Tamura, Y. Anda, M. Ishida, Y. Uemoto, T. Ueda, T. Tanaka, D. Ueda, "99.3% efficiency of three-phase inverter for motor drive using GaN-based gate injection transistors", Proc. IEEE Appl. Power Electron. Conf., pp. 481-484, 2011-Mar.
[5] P. Niknejad, T. Agarwal, M. Barzegaran, "Using gallium nitride DC-DC converter for speed control of BLDC motor", Electric Machines and Drives Conference (IEMDC) 2017 IEEE International, pp. 1-6, 2017.
[6] W. Tschudi, T. Xu, "Cleanroom energy benchmarking results", ASHRAE Trans., no. Winter, pp. 733-742, 2003
[7] S. Hu, Y. Chuah, "Power consumption of semiconductor fabs in Taiwan", Energy, vol. 28, no. 8, pp. 895-907, 2003.
[8] Z. Liu, "Characterization and failure mode analysis of cascode GaN HEMT", 2014.
[9] Kowa Air Filter Industry Limited "Kowa Fan Filter Unit"
[10] SAF XN.GK-INTERTRUST "Unidad de filtro de ventilador HEPA FFU "
[11] Texas Instruments “TI Precision Labs – Motor Drives: Brushless-DC Motor 1”
[12] M. Miyamasu, K. Akatsu, Efficiency comparison between Brushless dc motor and Brushless AC motor considering driving method and machine design, IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, pp.1830, 1835, Nov. 2011
[13] Singh, B., Bist, V.: ‘A single sensor based PFC Zeta converter FED BLDC motor drive for fan applications’. 2012 IEEE Fifth Power India Conf., 19–22 December 2012, pp. 1–6.
[14] TEXAS INSTRUMENTS“UCx854 High-Power Factor Preregulator”
[15] S. Mao, R. Ramabhadran, J. Popovic, J. A. Ferreira, "Investigation of CCM boost PFC converter efficiency improvement with 600V wide band-gap power semiconductor devices", 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 388-395, 2015.
[16] Transphorm“TPH3212PS datasheet”
[17] VISHAY“IRFB11N50A, SiHFB11N50A”
[18] R. Severns, "Design of snubbers for power circuits"
[19] Zan Huang, Felix Recht and Yifeng Wu ,Transphorm“Recommended External Circuitry for Transphorm GaN FETs”
[20] Transphorm, Inc “Printed Circuit Board Layout and Probing for GaN Power Switches” Application Note AN-0003
[21] MC Ozgenel “Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor” Review of Scientific Instruments 88, 095007 (2017)
[22] G.-J. Su, J. W. McKeever, "Low-cost sensorless control of brushless DC motors with improved speed range", IEEE Trans. Power Electron., vol. 19, no. 2, pp. 296-302, Mar. 2004.
[23] Texas Instruments “Sensorless Trapezoidal Control of BLDC Motors using BEMF Integration (InstaSPINTM-BLDC) Application Report”
[24] Texas Instruments“Trapezoidal Control of BLDC Motors Using Hall Effect Sensors”
[25] On Semiconductor“Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC”
[26] GaN Systems“GN001 Application Guide Design with GaN Enhancement mode HEMT”
[27] E. A. Jones, Z. Zhang, F. Wang, "Analysis of the dv/dt transient of enhancement-mode GaN FETs", Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2692-2699, 2017.
[28] J. Strydom, M. Rooij, A. Lidow “Gallium nitride transistor packaging advances and thermal modeling”, EDN China, Sep. 2012.
[29] D. Graovac, M. Purschel, A. Kiep, MOSFET power losses calculation using the data-sheet parameters, Jul. 2006.
[30] Transphorm“TPH3208PS datasheet”
[31] SILICON LABS“Si827x Data Sheet”
[32] K. Shirabe, M. Swamy, J. Kang, M. Hisatsune, Y. Wu, D. Kebort, J. Honea, "Efficiency comparison between Si-IGBT based drive and GaN based drive", IEEE Ind. Appl. Mag..
電子全文 電子全文(網際網路公開日期:20241029)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top