跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭思遠
研究生(外文):Cheng, Szu-Yuan
論文名稱:採用氮化鎵並聯串疊元件的功率模組封裝熱分析和布局設計研究
論文名稱(外文):Heat dissapation analysis and topology design of Power Module with Cascode GaN devices
指導教授:鄭泗東
指導教授(外文):Cheng, Stone
口試委員:成維華陳宗麟
口試委員(外文):Chieng, Wei-HuaChen, Tsung-Lin
口試日期:2019-12-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:氮化鎵功率電晶體熱模擬熱分析紅外線熱像儀
外文關鍵詞:GaN HEMTGallium nitridepower transistorthermal simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
 AlGaN/GaN HEMT相較於矽功率電晶體具備可在高溫下運作、高導熱性以及高飽和電子漂移速度等特點,此外也具較低導通電阻,也因此導通功率耗損較低,能源效率也較高。然而隨著功率的提升,元件的通道溫度也會升高,一旦通道溫度升高,將會使元件效能及可靠度下降。而為了改善元件效能下降的狀況,找出幫助封裝元件妥善散熱的方法十分重要。本研究將使用熱模擬分析軟體Ansys Icepak來模擬元件運作時的溫度分布,再利用IR熱像儀來驗證模擬溫度分布的正確性,藉由以上兩種方式可得到熱堆積的位置,此資訊可幫助分析找出散熱方法。
本研究對單顆氮化鎵封裝元件及氮化鎵功率模組(PM)進行熱模擬及實際實驗,以了解封裝元件及功率模組施加功率時的溫度分布及散熱狀況。此外,透過調整氮化鎵排列方式,由直線型排列調整為田字型排列,將氮化鎵功率模組(PM)中的氮化鎵元件溫度分布調整至均勻的狀態。同時調整銅片的布局方式也可以協助散熱。至於熱模擬及實驗的部分,經修正模擬參數(銀膠熱傳導係數)及仔細考量實驗所需要素(MOS消耗功率),調整後模擬溫度與實際實驗溫度趨近。本研究由模擬與實驗方法佐證調整功率元件模組布局後的溫度分布狀況,提出熱分析及功率元件基板布局散熱設計。
Compared with the traditional silicon-based power devices, AlGaN / GaN power transistors have high electron mobility, high thermal conductivity and also can operate well at high temperature. In addition, AlGaN / GaN power transistors also have lower on resistance, which reduce the power loss during the operation of transistors, and make the energy consumption more efficiently. However, following by the increase of the power, the tunnel temperature of components will also increase, and this will influence the reliability and performance of power devices. It is important to find out the method to help heat dissipate from the components properly. This study is carrying on using the thermal analysis software-Ansys Icepak to simulate the conditions while the power devices are operating, and aquire the temperature profile of those. Additionally, we will conduct the experiment and use the IR camera to measure the temperature of power devices, which can make sure whether the result of simulation is correct or not. With these two methods mentioned above, the accurate position where the heat accumulate in the components is shown, and the information can help us figure out how to dissipate the heat from them. The thermal simulation and practical experiments are also performed on the single gallium nitride package element and the gallium nitride power module (PM) to understand the temperature distribution and heat dissipation of the package element and power module when power is applied. By adjusting the gallium nitride arrangement from linear arrangement to rectangular-shaped arrangement, the temperature distribution of the gallium nitride elements in the gallium nitride power module (PM) is adjusted to a uniform state. At the same time, adjusting the layout of the copper sheet can also be helpful for heat dissipation. As for the part of thermal simulation and experiment, after modifying the simulation parameters (the thermal conductivity of the silver) and carefully considering the required elements of the experiment (MOSFET power consumption), the simulation temperature can approximately match the experimental temperature.
In conclusion, we use thermal simulation and experiment to prove that the temperature distribution of the gallium nitride elements in the gallium nitride power module (PM) can be uniform after adjusting the gallium nitride arrangement, and we propose the Heat dissipation analysis and topology design of Power Module with Cascode GaN devices.
摘要 Ⅰ
Abstract Ⅱ
誌謝…………………………………………………………………………………………………. Ⅳ
目錄…………………………………………………………………………………………………...Ⅴ
圖目錄……………………………………………………………………………………………… Ⅸ
表目錄………………………………………………………………………………………………XII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 文獻回顧 2
1-4 論文架構 4
第二章 介紹AlGaN/GaN HEMT元件 5
2-1 AlGaN/GaN HEMT介紹及工作原理 5
第三章 氮化鎵封裝元件之熱模擬分析 7
3-1有限元素方法之基本概念 7
3-2熱模擬分析軟體介紹 8
第四章功率模組(PM)構裝設計與氮化鎵封裝元件結構介紹 9
4-1氮化鎵功率模組(PM)構裝設計…………………………………………………...9
4-2單顆氮化鎵元件結構介紹 10
4-3氮化鎵功率模組(PM)結構介紹………………………………………………...12
第五章120mm GaN串疊電路熱模擬分析 18
5-1有限元素分析模型(Finite element analysis model, FEA model) 18
第六章120 mm GaN串疊電路熱模擬及實驗 22
6-1 IR紅外線熱像儀基本原理介紹………………………………………………...22
6-2實驗儀器介紹………………………….………………………………………...22
6-3實驗架設………………………….……………………………………………...23
6-4實驗結果並與模擬比較…………………….…………………………………...24
6-4-1單顆氮化鎵封裝元件(熱傳導係數為4的散熱片)………………….…..24
6-4-1-1無施加功率…………...………………………………………….24
6-4-1-2施加功率3.3W……………………………………………..…….25
6-4-1-3施加功率14W………………………………………………..…..26
6-4-1-4施加功率30W……………………………………………………26
6-4-1-5施加功率49W……………………………………………………27
6-4-2模擬結果與實驗結果比較………………………………………….....…28
第七章 氮化鎵功率模組實驗架設與結果比較……………………………………29
7-1 實驗架設 29
7-2 實驗結果與模擬比較…………………………………………………………...30
7-2-1 氮化鎵功率模組(PM)下臂部分………………………………………...30
7-2-1-1 無施加功率…………...………………………………………….30
7-2-1-2 施加功率0.1825W………………............…30
7-2-1-3 施加功率0.738W…...………………………...………………31
7-2-1-4 施加功率1.65W…...…………………………………………….32
7-2-1-5 施加功率3W…………………………………………………….33
7-2-1-6 施加功率4.68 W………………………………………………...33
7-2-1-7 施加功率6.75 W………………………………………………...34
7-2-1-8 施加功率9.1 W………………………………………………….35
7-2-1-9 施加功率11.8 W………………………………………………...35
7-2-1-10 施加功率14.85 W……………………………………………...36
7-2-1-11 施加功率17.5 W……………………………………………….37
7-2-1-12 施加功率20.9 W……………………………………………….37
7-2-1-13 PM下臂熱模擬及實驗結果整理……………………….……38
7-2-2 氮化鎵功率模組(PM)上臂部分…………………………………..…….39
7-2-2-1 無施加功率………………………………………………………39
7-2-2-2 施加功率0.18 W………………………………………………...39
7-2-2-3 施加功率0.72 W………………………………………………...40
7-2-2-4 施加功率1.61 W………………………………………………...41
7-2-2-5 施加功率2.8 W………………………………………………….41
7-2-2-6 施加功率4.25 W………………………………………………...42
7-2-2-7 施加功率6 W……………………………………………………43
7-2-2-8 施加功率7.82 W………………………………………………...43
7-2-2-9 施加功率9.6 W………………………………………………….44
7-2-2-10 施加功率11.47 W……………………………………………...45
7-2-2-11 PM上臂熱模擬及實驗結果整理…………………………...45
7-3 模擬參數及實驗條件調整……………………………………………………...46
7-4 調整參數後實驗結果與模擬比較……………………………………………...46
7-4-1氮化鎵功率模組(PM)下臂部分…………………………..…..46
7-4-1-1 無施加功率……………………………………………………....46
7-4-1-2 施加功率0.18 W………………………………………………...47
7-4-1-3 施加功率0.74W…………………………………………………48
7-4-1-4 施加功率1.65W…………………………………………………49
7-4-1-5 施加功率3W…………………………………………………….50
7-4-1-6 施加功率4.69W…………………………………………………51
7-4-1-7 施加功率6.75W…………………………………………………51
7-4-1-8 施加功率9.1W…………………………………………………..52
7-4-1-9 施加功率11.8W…………………………………………………53
7-4-1-10 施加功率14.85W………………………………………………53
7-4-1-11 施加功率17.5W………………………………………………..54
7-4-1-12 施加功率20.9W………………………………………………..55
7-4-1-13 PM上臂熱模擬及實驗結果整理………….....55
7-4-2氮化鎵功率模組(PM)下臂部分………………..……………………..56
7-4-2-1 無施加功率………………………………………………………56
7-4-2-2 施加功率0.19W…………………………………………………57
7-4-2-3 施加功率0.78W…………………………………………………58
7-4-2-4 施加功率1.75W…………………………………………………58
7-4-2-5 施加功率3W…………………………………………………….59
7-4-2-6 施加功率4.7W…………………………………………………..60
7-4-2-7 施加功率6.6W…………………………………………………..60
7-4-2-8 施加功率8.75W…………………………………………………61
7-4-2-9 施加功率11W…………………………………………………...62
7-4-2-10 施加功率13.28W………………………………………………62
7-4-2-11 PM下臂熱模擬及實驗結果整理……….………...63
第八章 結論與未來工作……………………………………………………………64
參考文獻……………………………………………………………………………..65
[1].Towhid Adnan Chowdhury ,“Self-Heating Outcomes in AlGaN/GaN HEMTS” , in IEEE Electron Device Letters, vol. 19, no. 3, pp. 89-91, March 1998
[2].Shuojie She, Wenli Zhang, “Thermal Analysis and Improvement of Cascode GaN device package for totem-pole bridgeless PFC rectifier”, Applied Thermal Engineering Volume 90, 5 November 2015
[3]. T. E. Salem, D. Ibitayo, B. R. Geil,” Calibration of an Infrared Camera for Thermal Characterization of High Voltage Power Electronic Components,” in Instrumentation and Measurement Technology Conference, 2005.IMTC 2005. IMTC 2005
[4]. Jeong Park, Moo Whan Shin, and Chin C. Lee,” Thermal Modeling and Measurement of GaN-Based HFET Devices”, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 7, JULY 2003
[5]. Ali Mohamed Darwish, Andrew J. Bayba, and H. Alfred Hung, “Thermal Resistance Calculation of AlGaN–GaN Devices”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 11, NOVEMBER 2004
[6]. Khaled Ahmeda, Brendan Ubochi,” Role of Self-Heating and Polarization in AlGaN/GaN-Based Heterostructures”, in IEEE Access, vol. 5, pp. 20946-20952, 2017
[7]. Hiroyuki Shibata, Yoshio Waseda, ” High Thermal Conductivity of Gallium Nitride (GaN) Crystals Grown by HVPE Process”, The Japan Institute of Metals, 2007 Volume 48 Issue 10 Pages 2782-2786
[8]. Dianyu Shen, Zhaolin Zhan, “ Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires”, Scientific Reports
[9]. P.Jeong, S. Moo Whan, and C. C. Lee, “Thermal modeling and measurement of GaN-based HFET devices,” Electron Device Letters, IEEE, vol. 24, no. 7, pp. 424-426, 2003.
[10]. A. Sarua et al., “Integrated micro-Raman/infrared thermography probe for monitorong of self-heating in AlGaN/GaN
[11]. W. T. James, “Electro-thermal-mechanical modeling of GaN HFETs and MOSFETs,”Atlanta, Ga.,2011.
[12]. 李奇穎,氮化鋁鎵/氮化鎵高電子移導率電晶體封裝熱分析. 交通大學機械工程系所學位論文,2012.
[13]. 王婕安,氮化鎵(GaN)功率元件之電熱模擬研究與封裝散熱分析. 交通大學機械工程系所學位論文,2014.
[14]. 周歆苹, 高功率氮化鎵(GaN)元件之封裝與熱分析研究. 交通大學機械工程系所學位論文,2017
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊