跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃威程
研究生(外文):Huang, Wei-Cheng
論文名稱:交互式徑向注入不可互溶流體之實驗
論文名稱(外文):Experiment of Immiscible Viscous Fingering via Alternating Injection
指導教授:陳慶耀
指導教授(外文):Chen, Ching-Yao
口試委員:劉耀先陳慶耀廖英皓
口試委員(外文):Liu, Yao-HsienChen, Ching-YaoLiao, Ying-Hao
口試日期:2020-02-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:48
中文關鍵詞:黏性指狀物交互式注入艾特伍數毛細數
外文關鍵詞:viscous fingeringHele-Shaw cellAtwood numberalternatingCapillary number
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用實驗應證Hele-Shaw cell流場並進行分析,觀察交互式注入在放射狀Hele-Shaw cell流場中對於不可互溶之兩流體分布情形並作分析討論。主要控制參數分為愛特伍數 (Atwood Number, A)、毛細數 (capillary number, Ca) 及注入流體層數 (N)。

在盧博鈞[12]的研究中已經以實驗確認交互式注入可互溶流體在放射狀Hele-Shaw cell流場中可以提高混合度,但對於不可互溶流體來說,由於不會混合的特性,所以尚未明白交互式注入對於此種流體的影響,因此我們此次想要探討不可互溶流體在交互式徑向注入的條件下是否有所改變。

本實驗在固定注入總量下,觀察改變控制參數所造成的影響。在單次注入下,A或Ca值愈高,其接觸界面的長度會隨之增長,代表黏性指狀物生成愈旺盛;但在交互式注入的條件下,隨著A和N同時增長,接觸界面的總長度反而相對穩定流場短,顯示指狀物受到一定的抑制;另一方面,在A = 0.8132時,N數愈高對於不同Ca下的實驗結果趨於相同。兩實驗皆顯示交互式注入為主要影響黏性指狀物之因素,主要原因為渠道效應使得流體在高N下,黏性指狀物容易在外層結合成形狀較為固定且不容易移動的流體區塊,在內層使指狀物形狀趨於一致,因此可說明交互式注入能有效提升不可互溶Hele-Shaw cell流場的穩定性。
This study validated and analyzed the flow field of radial Hele-Shaw cell via experimental approach. The influence of the interaction between two kinds of immiscible fluids in the radial Hele-Shaw cell acting by alternating injection was investigated and discussed. The major control variables were Atwood Number (A), capillary number (Ca), and number of injected layer (N).

According to previous study [12], the experimental results have verified that the mixing rate of miscible fluids in the radial Hele-Shaw cell flow could be enhanced via alternating injection. Nevertheless, the unmixable feature of immiscible fluids increased the uncertainty of the effect of alternating injection acting on these fluids. Consequently, we would like to investigated whether the immiscible fluids could be influenced under alternating injection.

The effect of changing the control parameters was observed under the invariance total volume of injected liquid in this experiment. In single injection, the interfacial length would be elongated as the A or Ca increased, indicating that the immiscible viscous fingering was stronger. On the contrary, in the alternating injection, the interfacial length would be shorter than that of steady flow field as the A raised under a high value of N. This represented that the viscous fingering was suppressed. On the other hand, when the A kept as 0.8132, a higher N would have a stronger potential to make the results between different Ca become identical. This illustrates that the major factor to have influence on the viscous fingering was the alternating injection. The channel effect dominated the flow field. Under a high value of N, the viscous fingering in the outer layer tended to merge into a flow region which having a relatively fixed shape and low potential to move. Besides, the shape of the viscous fingering in the inner layer would also became consistent due to channeling. This gave the explanation that the stability of the Hele-Shaw cell flow field featuring immiscible fluids could be enhanced by alternating injection.
目錄
摘要 I
Abstract II
致謝 IV
表目錄 VI
圖目錄 VI
符號說明 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1-3 研究目的 4
第二章 實驗原理、方法及設備 7
2-1 實驗儀器說明 7
2-1 實驗步驟 8
2-3 控制參數 9
第三章 結果與討論 16
3-1 理論穩定流場與A = 0.5556之實驗比較 16
3-2 A與N關係之實驗 17
3-3 Ca與N關係之實驗 21
3-4渠道效應 22
第四章 結論及未來展望 46
參考文獻 47
[1] B. Jha, L. Cueto-Felguroso, and R. Juanes, Phys. Rev. Lett. 106, 194502
(2011).

[2] 黃英誠。交互式徑向對於混合效率的改善。交通大學/機械工程學系/研究所碩士論文(2016)

[3] P. G. Saffman and G. I. Taylor, Proc. R. Soc. London Ser. A 245, 321 (1958).

[4] G. M. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987).

[5] S. B. Gorell and G. M. Homsy, SIAM J. Appl. Math. 43, 79 (1983); J. P.Stokes, D. A. Weitz, J. P. Gollub, A. Dougherty, M. O. Robbins, P. M. Chaikin, and H. M. Lindsay, Phys. Rev. Lett. 57, 1718 (1986).

[6] Y. K. Suh and S. Kang, Micromachines 1, 82 (2010).

[7] C.-Y. Chen and E. Meiburg. “Miscible Porous Media Displacements in the Quarter Five Spot Confiuraion. Part 1. The Homoheneous Case”, J. Fluid Mech., 371, pp. 233- 268, September (1998).

[8] E. O. Dias, E. Alverez-Lacalle, M. S. Carvalho, and J. A. Miranda.“Minimization of Vicsous Fluid Fingering: A Variational Scheme for OptimalFlow Rates”, Phys. Rev Lett., 109, 144502 (5 pages), October (2012).

[9] E. O. Dias, and J. A. Miranda, ”Control of Radial Fingering Patterns: Weakly Nonlinear Approach”, Phys. Rev. E, 81, 016312 (7 pages), January(2010).

[10] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. Lett. 106, 194502 (2011).

[11] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. E 84, 066312(2011).

[12] 盧柏鈞。交互式徑向注入對增強混合效率之實驗。交通大學/機械工程學系/研究所碩士論文(2018)

[13] Y.H. Morl, N. Tsul, and M. Kiomiya., Surface and Interfacial Tensions and Their Combined Properties in Seven Binary, Immiscible Liquid-Liquid-Vapor Systems, J. Chem. Eng. Data 29, 4, 407-412 (1984)

[14] L.A. Girfalco and R.J. Good, ‘A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension’ J.
Phys. Chem. 1957, 61, 7, 904-909 (1957)

[15] 黃裕盛。可應用於可互溶與不可互溶Hele-Shaw流場之界面擴散數值方法。交通大學/機械工程學系/研究所博士論文(2015)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top