跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子銓
研究生(外文):Huang, Zih-Chuan
論文名稱:成型透鏡的靜態可見光散射特性與其密度分佈之關係
論文名稱(外文):Relationships between Static Visible Light Scattering Characteristics of Molded Lens and Lens Density Distribution
指導教授:陳仁浩
指導教授(外文):Chen, Ren-Haw
口試委員:陳仁浩黃正昇蔡佳宏
口試委員(外文):Chen, Ren-HawHuang, Cheng-ShengTsai, Chia-Hung
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:108
中文關鍵詞:PMMA成型透鏡靜態可見光散射密度分佈
外文關鍵詞:PMMA molded lensStatic visible light scatteringDensity distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學透鏡可藉由高分子材料以射出成型的方式來生產。然而,不定形狀態的高分子材料在成型時,材料內部會受到溫度與壓力變化可能形成直徑數十奈米以下的短距離有序結構。此種結構除了會對密度分佈造成不均勻之外,也可能產生光散射而影響光學成像品質。
本研究目的為探討短距離有序結構是否對成型透鏡造成影響,尤其是在可見光源下,對於透鏡各位置的光散射變化以及密度分佈的狀況。
本研究使用不定形高分子材料PMMA以射出成型生產平凸透鏡,並利用靜態可見光散射模組進行成型透鏡光散射特性的檢測,然後藉由密度分析儀量測透鏡相應部位的密度,以綜合分析成型透鏡的光散射特性與密度分佈之間的關係。
研究結果顯示,於空氣中與蔗糖水溶液的散射光量測均顯示高模溫成型透鏡的散射光強度高於低模溫成型透鏡者。若使用與透鏡相同折射率的蔗糖水溶液作為散射光量測介質,其能有效排除透鏡表面粗糙度與曲率對於散射光量測的影響。高低模溫成型透鏡於折射率液中的散射光強度與同一成型參數所成型透鏡的密度是呈現高度正相關。透鏡外圍處的散射光強度與密度均呈現較高,愈往中心處,此兩種物理參數值均有下降趨勢。
本研究藉由靜態光散射的方式,探討PMMA成型透鏡於可見光源下的光散射變化,同時分析其與透鏡密度分佈的關係,對於其他塑膠材料,本研究可作為材料成型後內部性質的檢測方法之參考。
Optical lenses can be produced by injection molding of polymer materials. However, when forming an amorphous polymer material, the inside of the material will be subjected to temperature and pressure changes, which may form a short-range ordered structure with a diameter of less than tens of nanometers. In addition to causing uneven density distribution, this structure may also cause light scattering and affect optical imaging quality.
The purpose of this research is to investigate whether the short-distance ordered structure affects the molded lens, especially under the visible light source, the light scattering changes and the density distribution of each position of the lens.
In this study, an amorphous polymer material PMMA was used to produce plano-convex lenses by injection molding, and a static visible light scattering module was used to detect the light scattering characteristics of the molded lens, and then the density of the corresponding part of the lens was measured by a density analyzer. To comprehensively analyze the relationship between the light scattering characteristics of the molded lens and the density distribution.
The results of the study show that the measurement of scattered light in the air and the sucrose aqueous solution shows that the intensity of scattered light of the high-mold-temperature molded lens is higher than that of the low-mold-temperature molded lens. If the sucrose aqueous solution with the same refractive index as the lens is used as the scattered light measurement medium, it can effectively eliminate the influence of the lens surface roughness and curvature on the scattered light measurement. The intensity of scattered light in the refractive index liquid of the high and low mold temperature molded lenses is highly positively correlated with the density of the lenses molded with the same molding parameters; while the density and intensity of the scattered light at the periphery of the lens are both high, but toward the center, both of these physical parameters have a downward trend.
The study uses static light scattering to explore the light scattering changes of PMMA molded lens under visible light source, and analyzes its relationship with lens density distribution. For other plastic materials, this study can be used as a method to detect the internal properties of materials after molding.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
一、 序論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.4 研究方法 9
二、 基礎理論 10
2.1 高分子材料的組成與分類 10
2.2 高分子材料的光學性質 12
2.3 短距離結構的形成及其對高分子材料的光學性質之影響 25
2.4 靜態光散射原理 28
2.5 光譜儀原理 30
2.6 密度儀原理 31
2.7 透鏡原理 32
三、 射出成型透鏡的可見光散射特性與密度分佈的檢測實驗 34
3.1 實驗目的 34
3.2 實驗材料 34
3.3 實驗方法與架構 35
3.4 量測與校正方法 37
3.4.1 光譜量測 37
3.4.2 靜態可見光散射量測 37
3.4.3 透鏡切割 46
3.4.4 密度量測 48
3.5 實驗設備 49
3.5.1 射出成型 49
3.5.2 光譜儀 50
3.5.3 靜態可見光散射模組 50
3.5.4 雷射光束檢測 54
3.5.5 折射率液配製 55
3.5.6 切割刀具 57
3.5.7 密度儀 57
四、 射出成型透鏡的可見光散射特性與密度分佈的結果與討論 58
4.1 成型參數與結果 58
4.2 成型透鏡的光譜分析 59
4.3 成型透鏡的散射光強度量測結果 61
4.3.1 透鏡於空氣中散射光強度量測結果 61
4.3.2 透鏡於折射率液中校準之散射光強度量測結果 69
4.4 成型透鏡的密度分佈量測結果 79
4.5 成型透鏡的光散射與其密度分佈之關係 81
五、 結論與建議 84
5.1 結論 84
5.2 建議與改進 85
參考文獻 86
附錄一、折射率液治具設計圖 91
附錄二、透鏡的折射率 93
附錄三、透鏡的散射光強度 96
附錄四、透鏡的密度 104
[1] Gabrys, B., Higgins, J. S., and Scharpf, O., 1986, "Short-range order in amorphous poly(methyl methacrylate)," Journal of the Chemical Society, Faraday Transactions I, 82(6), pp. 1929-1934.
[2] Schubach, H. R., Nagy, E., and Heise, B., 1981, "Short range order of amorphous polymers derived by WAXS," Colloid & Polymer Science, 259(8), pp. 789-796.
[3] Schubach, H. R., and Heise, B., 1986, "Structure and anisotropy in polycarbonate. I. Short range order of amorphous polycarbonate revealed by WAXS," Colloid and Polymer Science, 264(4), pp. 335-342.
[4] Genix, A. C., Arbe, A., Alvarez, F., Colmenero, J., Schweika, W., and Richter, D., 2006, "Local structure of syndiotactic poly(methyl methacrylate). A combined study by neutron diffraction with polarization analysis and atomistic molecular dynamics simulations," Macromolecules, 39(11), pp. 3947-3958.
[5] Yeh, G. S. Y., 1972, "A structural model for the amorphous state of polymers: Folded-chain fringed micellar grain model," Journal of Macromolecular Science, Part B, 6(3), pp. 465-478.
[6] Debye, P., and Bueche, A. M., 1949, "Scattering by an Inhomogeneous Solid," Journal of Applied Physics, 20(6), pp. 518-525.
[7] Wu, C., Siddiq, M., and Woo, K. F., 1995, "Laser light-scattering characterization of a polymer mixture made of individual linear chains and clusters," Macromolecules, 28(14), pp. 4914-4919.
[8] Patterson, G. D., 1976, "Light scattering and the local structure of amorphous polymer," Journal of Macromolecular Science, Part B, 12(1), pp. 61-74.
[9] Koike, Y., Tanio, N., and Ohtsuka, Y., 1989, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules, 22(3), pp. 1367-1373.
[10] Bennett, H. E., 1978, "Scattering characteristics of optical materials," Optical Engineering, 17(5), pp. 480-488.
[11] 黃志德, 1987, "鏡片表面粗糙度與光散射之關係," 碩士論文, 輔仁大學, 台灣.
[12] 陳信瑋, 2007, "射出成型參數對光學鏡片表面粗糙度的影響," 碩士論文, 國立高雄應用科技大學, 台灣.
[13] 葉涵, 2016, "PMMA微透鏡陣列於射出成形中的收縮特性與定位精度," 碩士論文, 國立交通大學, 台灣.
[14] 田東弘, 2018, "雷射熱處理對光纖陣列連結器局部收縮的影響之研究," 碩士論文, 國立交通大學, 台灣.
[15] 劉宇翔, 2019, "射出成型模穴內熔膠狀態的監視與模擬," 碩士論文, 國立交通大學, 台灣.
[16] Lai, H. E., and Wang, P. J., 2008, "Study of process parameters on optical qualities for injection-molded plastic lenses," Applied Optics, 47(12), pp. 2017-2027.
[17] 王傳均, 2019, "射出成形光學透鏡的靜態光散射特性," 碩士論文, 國立交通大學, 台灣.
[18] Halwer, M., 1948, "Light scattering by sucrose solutions at high concentrations," Journal of the American Chemical Society, 70(12), p. 3985.
[19] Maron, S. H., and Lou, R. L. H., 1955, "The Scattering of Light by Sucrose Solutions," The Journal of Physical Chemistry, 59(3), pp. 231-234.
[20] Rieger, C. J., and Carpenter, F. G., 1959, "Light Scattering by Commercial Sugar Solutions 1," Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 63A(3), pp. 205-211.
[21] Wendorff, J. H., and Fischer, E. W., 1973, "Small angle X-ray scattering from amorphous polymers arising from heterogeneities," Kolloid-Zeitschrift & Zeitschrift fur Polymere, 251(11), pp. 884-891.
[22] Tanabe, Y., Muller, N., and Fischer, E. W., 1984, "Density fluctuation in amorphous polymers by small angle X-ray scattering," Polymer Journal, 16(6), pp. 445-452.
[23] Hoeve, C. A. J., 1965, "Density distribution of polymer segments in the vicinity of an adsorbing interface," The Journal of Chemical Physics, 43(9), pp. 3007-3008.
[24] Wimberger-Friedl, R., Prast, G., Kurstjens, A. V., and De Bruin, J. G., 1992, "Measurement of the density distributions in quenched polycarbonate specimens by a quantitative schlieren optical technique," Journal of Polymer Science Part B: Polymer Physics, 30(1), pp. 83-90.
[25] Wimberger-Friedl, R., and De Bruin, J. G., 1993, "Gapwise density distributions in injection-molded poly(methylmethacrylate)," Polymer Engineering & Science, 33(7), pp. 383-392.
[26] Kim, I. H., Park, S. J., Chung, S. T., and Kwon, T. H., 1999, "Numerical modeling of injection/compression molding for center-gated disk: part I. injection molding with viscoelastic compressible fluid model," Polymer Engineering and Science, 39(10), pp. 1930-1942.
[27] Zhao, P., Xie, J., Zhang, J., Zhang, C., Xia, N., and Fu, J., 2020, "Evaluation of polymer injection molded parts via density‐based magnetic levitation," Journal of Applied Polymer Science, 137(7), p. 48431(48413).
[28] Li, L., Raasch, T. W., Sieber, I., Beckert, E., Steinkopf, R., Gengenbach, U., and Yi, A. Y., 2014, "Fabrication of microinjection-molded miniature freeform Alvarez lenses," Applied Optics, 53(19), pp. 4248-4255.
[29] Stevens, M. P., 2009, Polymer chemistry: An introduction, Oxford University Press, New York.
[30] Jansen, J. A., 2016, "Plastics-it’s all about molecular structure," Plastics Engineering, 72(8), pp. 44-49.
[31] Rabek, J. F., 1987, Mechanisms of photophysical processes and photochemical reactions in polymers-theory and applications, John Wiley & Sons, Great Britain.
[32] Al-Azzawi, A., 2007, Light and optics: Principles and practices, CRC Press, New York.
[33] 國家度量衡標準實驗室, "光強度的單位," https://www.nml.org.tw/.
[34] 林建中, 1998, 高分子材料性質與應用, 高立圖書, 台北市.
[35] Hall, C., 1981, Polymer materials, John Wiley & Sons, New York.
[36] Birley, A. W., Haworth, B., and Batchelor, J., 1991, Physics of plastics: Processing, properties and materials engineering, Oxford University Press, New York.
[37] Bennett, C. A., 2009, 物理光學(Principles of physical optics), 滄海書局, 台中市.
[38] 葉玉堂, 饒建珍, and 肖峻, 2008, 幾何光學, 五南圖書, 台北市.
[39] Kozlov, G. V., and Zaikov, G. E., 2004, Structure of the polymer amorphous state, VSP/ Brill Academic, Netherlands.
[40] Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., and Veyssière, P., 2001, Encyclopedia of materials: Science and technology, Elsevier, Pergamon.
[41] Saurov, S. K., 2018, "Study on crystallization tendency of disaccharides by x-ray scattering," Master’s thesis, University of Helsinki, Finland.
[42] Chu, B., 1991, Laser light scattering: Basic principles and practice, Academic Press, Cambridge.
[43] Hiemenz, P. C., and Lodge, T. P., 2007, Polymer chemistry, CRC Press, New York.
[44] 施正雄, 2012, 儀器分析原理與應用, 五南圖書, 台北市.
[45] 賴樹聲, 2010, 基礎光學, 鄂圖曼出版社, 台北市.
[46] 仲成儀器股份有限公司, 1995, 雷射應用光學實驗裝置, 全華科技圖書, 台北市.
[47] 太松實業股份有限公司, "日本三菱麗陽《ACRYPET》PMMA樹脂," http://www.dynachem.com.tw/index.html.
[48] 黃柏毓, 2019, "應用模內壓縮於射出成型透鏡的精度控制," 碩士論文, 國立交通大學, 台灣.
[49] Snyder, C. F., and Hattenburg, A. T., 1963, "Refractive indices and densities of aqueous solutions of invert sugar," National Bureau of Standards, U.S. Government Printing Office, United States, pp. 1-6.
[50] Sultanova, N., Kasarova, S., and Nikolov, I., 2009, "Dispersion properties of optical polymers," Acta Physica Polonica A, 116(4), pp. 585-587.
[51] SIGMAKOKI, "Glass polarizer: SPF-30C-32," https://www.global-optosigma.com/en_jp/.
[52] THORLABS, "Photo detector: DET36A2," https://www.thorlabs.com/.
[53] 張詒安, 2014, "白光二極體的發展," 科學研習, 53(5), p. 18.
[54] CINOGY, "Laser beam profiler: CinCam CMOS-1202," http://www.cinogy.com/.
[55] Ratner, B., 2009, The correlation coefficient: Its values range between +1/−1, or do they?, Palgrave Macmillan.
電子全文 電子全文(網際網路公開日期:20250819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top