跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳鋒祺
研究生(外文):Wu, Feng-Chi
論文名稱:天然物(±)-Xiamycin A 之全合成研究
論文名稱(外文):Total Synthesis of Natural Product (±)-Xiamycin A
指導教授:吳彥谷
指導教授(外文):Wu, Yen-Ku
口試委員:吳彥谷孫仲銘黃郁文梁建夫
口試委員(外文):Wu, Yen-KuChung-Ming SunYu-Wen HuangChien-Fu Liang
口試日期:2019-11-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:134
中文關鍵詞:天然物全合成吲哚倍半萜類反式十氫萘咔唑α 芳基化反應伯奇還原羧化反應夫里德耳-夸夫特環化
外文關鍵詞:Natural product total synthesisindolosesquiterpenoidstrans-decalincarbazoleα-arylation reactionBirch reductive carboxylationFriedel-Crafts cyclization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Xiamycin A 天然物在2010年由Hertweck等人從鏈黴菌屬(Streptomyces)的菌落中分離出來,屬於吲哚倍半萜類(indolosesquiterpenoids)天然物的一種。xiamycin A 單體及雙體皆具有廣泛的生物活性,包含抗細菌及抗病毒的活性等,也使得此類分子具有成為新型態抗生素的潛力。合成挑戰包含了反式十氫萘(trans-decalin)環及咔唑(carbazole)中心的建立。在本篇研究中,為了完成xiamycin A的全合成,我們共探索了4代不同的合成路徑。xiamycin A其多環的骨架可藉由環狀插烯酯(Vinylogous ester)與溴化芳基(Aryl bromides)進行一系列的α芳基化反應,在三步內建立出來。之後我們選擇了伯奇還原羧化反應(Birch-type reductive carboxylation)引進酯類基團,並同時建立正確的反式十氫萘環骨架。
第一代路徑中,咔唑可透過芳基化反應被接在環狀插烯酯上。然而在夫里德耳-夸夫特環化(Friedel-Crafts cyclization)反應中會出現位置選擇性的問題,因而降低總產率。且咔唑在伯奇還原羧化反應也會發生被部分還原的問題,所以此路徑在這個階段被終止。
在第二代路徑中,有鑑於之前的實驗結果,咔唑被結構較簡單的苯甲醚取代,因為苯環在伯奇還原的環境中反應性較咔唑低,且不會有位置選擇性的問題,然而在最後一步水解時,我們發現乙酯的部分在neo-pentyl位置時可能因為較大的立體障礙,所以無法用傳統的方式水解,也代表著合成上需要更容易水解的酯類。
第三代路徑包含了許多針對夫里德耳-夸夫特環化以及伯奇還原反應的細微修正,乙酯被替換成甲酯以期能解決水解的問題。我們嘗試在夫里德耳-夸夫特環化反應中了保留苯甲醚氧上的甲基並觀察在接上甲酯基團後是否能被去掉。另一條路徑是在伯奇還原之前先建立起聯苯胺的結構,原因是苯基團可同時作為氮原子保護基以及生成咔唑的配體。然而實驗上發現用傳統的苯甲醚去保護試劑如: BBr3 會生成過反應去羧基的產物。至於聯苯胺的部分則是在伯奇還原反應中會分解掉。
之後我們轉向發展第4代合成路徑。咔唑基團在最後階段才被生成。立體障礙大的甲酯基團利用Krapcho去羧基化方法順利去掉。最終,我們成功的合成了天然物(±)-Xiamycin A,以及其甲基的衍生物。
Xiamycin A, an indolosesquiterpenoids natural product was first isolated from the Streptomyces (鏈黴菌屬) in 2010 by Hertweck. Xiamycin A and its dimer exhibit a broad spectrum of bioactivities, including antibacterial and antiviral properties, which make it a potential candidate for new type antibiotics. Synthetic challenges include trans-decalin ring and carbazole core construction. In this study, we explored four different generations of synthetic pathways in order to achieve the racemic total synthesis of xiamycin A. The polycyclic framework of xiamycin A was constructed through a 3-step sequence featuring the α-arylation reaction of a cyclic vinylogous ester with aryl bromides, and we chose Birch-type reductive carboxylation to introduce ester and correct trans-decalin ring structure simultaneously.
In the 1st generation, carbazole moiety was connected with cyclic vinylogous ester through arylation, however, during Friedel-Crafts cyclization step, site-selectivity problem took place, thus reducing the total yield. And carbazole would undergo inevitable partial reduction during Birch-type reductive carboxylation step. So this route was aborted at this stage.
In the 2nd generation, based on previous experiment results, carbazole was replaced by a relatively simple anisole structure, since benzene ring is less reactive compared to carbazole under Birch reduction environment and there was no site-selectivity problem for this symmetric anisole substrate. However, in the last hydrolysis step, we found that ethyl ester moiety at neo-pentyl position is hard to be hydrolyzed using traditional methods, presumably due to the large steric hindrance, which implies that an easily hydrolyzed such as methyl ester is required.
The 3rd generation consisted of several minor modifications to the Friedel-Crafts cyclization and Birch reduction. Ethyl ester is replaced by methyl ester in hopes of solving the hydrolysis problem. We tried keeping O-methyl group of anisole after the Friedel-Crafts cyclization and explored whether it can be removed after installing methyl ester. Another route which construct diphenyl aniline before birch reduction step was also developed since phenyl group can act as both N-protecting group and carbazole formation partner. However, experimental results showed that conventional anisole deprotecting reagent such as BBr3 will generate further decarboxylated product. As for aniline case, such diphenyl structure will decompose under birch reduction.
Then we turned to the 4th generation. Carbazole was formed at late stage. Steric hindered methyl ester was smoothly cleaved using Krapcho decarboxylation method. Finally, we successfully synthesized natural product (±)-Xiamycin A and its methyl ester derivatives.
摘要 i
Abstract ii
謝誌 iv
Abbreviation v
Contents vii
List of Schemes ix
List of Tables xi
List of Figures xi
Ⅰ. Introduction 1
1.1 General Information of Xiamycin A 1
1.2 Reported Synthesis 3
1.3 Alpha-Arylation 11
Ⅱ. Results & Discussion 12
2.1.1 Retro-Synthetic Analysis-1st Generation 12
2.1.2 Arylbromide Preparation-1st Generation 13
2.1.3 Vinylogous Ester Preparation-1st Generation 13
2.1.4 α-Arylation-1st Generation 14
2.1.5 Cerium-assisted Grignard addition-1st Generation 15
2.1.6 Friedel-Crafts Cyclization-1st Generation 16
2.1.7 Birch Type Reductive Carboxylation-1st Generation 19
2.2.1 Retro-Synthetic Analysis-2nd Generation 20
2.2.2 α-Arylation-2nd Generation 21
2.2.3 Cerium-assisted Grignard addition-2nd Generation 21
2.2.4 Friedel-Crafts Cyclization-2nd Generation 24
2.2.5 Birch Type Reductive Carboxylation-2nd Generation 24
2.2.7 Luche Reduction-2nd Generation 25
2.2.8 Ester Hydrolysis-2nd Generation 26
2.3.1 Divergent Synthetic Route Analysis-3rd Generation 27
2.3.2 Friedel-Crafts Cyclization-3rd Generation 28
2.3.3 Birch Reductive Carboxylation Test-3rd Generation 29
2.4.1 Retro-Synthetic Analysis-4th Generation 31
2.4.2 TBS Protection & Birch Reductive Carboxylation-4th Generation 32
2.4.3 Triflate Conversion-4th Generation 33
2.4.4 Luche Reduction-4th Generation 33
2.4.5 Carbazole Formation-4th Generation 34
2.4.6 Ester Hydrolysis-4th Generation 37
2.5.1 1H NMR (CD3OD) Spectral Comparison of Natural and Synthetic Xiamycin A 38
2.5.2 13C NMR (CD3OD) Spectral Comparison of Natural and Synthetic Xiamycin A 39
Ⅲ. Conclusion 41
IV. Future Work 43
V. Experimental Section 44
4.1 General Information 44
4.2 Experimental Procedures & Spectrum-1st Generation 45
4.3 Experimental Procedures & Spectrum-2nd Generation 53
4.4 Experimental Procedures & Spectrum-3rd Generation 62
4.5 Experimental Procedures & Spectrum-4th Generation 67
Ⅵ. Reference 76
Ⅶ. Appendix 81
Ⅵ. Reference
1. Roll, D. M.; Barbieri, L. R.; Bigelis, R.; McDonald, L. A.; Arias, D. A.; Chang, L.-P.; Singh, M. P.; Luckman, S. W.; Berrodin, T. J.; Yudt, M. R. The Lecanindoles, Nonsteroidal Progestins from the Terrestrial Fungus Verticillium lecanii 6144. J. Nat. Prod. 2009, 72, 1944-1948.
2. Che, Q.; Zhu, T.; Keyzers, R. A.; Liu, X.; Li, J.; Gu, Q.; Li, D. Polycyclic Hybrid Isoprenoids from a Reed Rhizosphere Soil Derived Streptomyces sp. CHQ-64. J. Nat. Prod. 2013, 76, 759-763.
3. Marcos, I. S.; Moro, R. F.; Costales, I.; Basabe, P.; Díez, D. Sesquiterpenyl Indoles. Nat. Prod. Rep. 2013, 30, 1509-1526.
4. Corsello, M. A.; Kim, J.; Garg, N. K. Indole Diterpenoid Natural Products as the Inspiration for New Synthetic Methods and Strategies. Chem. Sci. 2017, 8, 5836-5844.
5. Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. Total Synthesis of Dixiamycin B by Electrochemical Oxidation. J. Am. Chem. Soc. 2014, 136, 5571-5574.
6. Sun, Y.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A. Bioinspired Total Synthesis of Sespenine. Angew. Chem., Int. Ed. 2014, 53, 9012-9016.
7. Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Total Synthesis and Antiviral Activity of Indolosesquiterpenoids from the Xiamycin and Oridamycin Families. Nat. Commun. 2015, 6096.
8. Trotta, A. H. Total Synthesis of Oridamycins A and B. Org. Lett. 2015, 17, 3358-3361.
9. Sun, Y.; Meng, Z.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A. A Concise total Synthesis of Sespenine, a Structurally Unusual Indole Terpenoid from Streptomyces. Org. Chem. Front. 2016, 3, 368-374.
10. Trotta, A. H. Toward a Unified Total Synthesis of the Xiamycin and Oridamycin Families of Indolosesquiterpenes. J. Org. Chem. 2017, 82, 13500-13516.
11. Pfaffenbach, M.; Bakanas, I.; O'Connor, N. R.; Herrick, J. L.; Sarpong, R. Total Syntheses of Xiamycins A, C, F, H and Oridamycin A and Preliminary Evaluation of their Anti-Fungal Properties. Angew. Chem., Int. Ed. 2019, 58, 15304-15308.
12. Kim, S.-H.; Ha, T.-K.-Q.; Oh, W. K.; Shin, J.; Oh, D.-C. Antiviral Indolosesquiterpenoid Xiamycins C-E from a Halophilic Actinomycete. J. Nat. Prod. 2016, 79, 51-58.
13. Ding, L.; Munch, J.; Goerls, H.; Maier, A.; Fiebig, H. H.; Lin, W.-H.; Hertweck, C. Xiamycin, A Pentacyclic Indolosesquiterpene with Selective Anti-HIV Activity from a Bacterial Mangrove Endophyte. Bioorg. Med. Chem. Lett. 2010, 20, 6685-6687.
14. Ding, L.; Maier, A.; Fiebig, H. H.; Lin, W.-H.; Hertweck, C. A family of Multicyclic Indolosesquiterpenes from a Bacterial Endophyte. Org. Biomol. Chem. 2011, 9, 4029-4031.
15. Tanis, S. P.; Chuang, Y.-H.; Head, D. B. Furans in Synthesis. 8. Formal Total Syntheses of (±)- and (+)-Aphidicolin. J. Org. Chem. 1988, 53, 4929-4938.
16. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, I. 2-Azaadamantane N-Oxyl (AZADO) and 1-Me-AZADO: Highly Efficient Organocatalysts for Oxidation of Alcohols. J. Am. Chem. Soc. 2006, 128, 8412-8413.
17. Justicia, J.; Oller-López, J. L.; Campaña, A. G.; Oltra, J. E.; Cuerva, J. M.; Elena Buñuel, E.; Cárdenas, D. J. 7-endo Radical Cyclizations Catalyzed by Titanocene(III). Straightforward Synthesis of Terpenoids with Seven-Membered Carbocycles. J. Am. Chem. Soc. 2005, 127, 14911-14921.
18. Justicia, J.; Rosales, A.; Buñuel, E.; Oller-López, J. L.; Valdivia, M.; Haïdour, A.; Oltra, J. E.; Barrero, A. F.; Cárdenas, D. J.; Cuerva, J. M. Titanocene-Catalyzed Cascade Cyclization of Epoxypolyprenes: Straightforward Synthesis of Terpenoids by Free-Radical Chemistry. Chem. Eur. J. 2004, 10, 1778-1788.
19. Morcillo, S. P.; Miguel, D.; Resa, S.; Martín-Lasanta, A.; Millán, A.; Choquesillo-Lazarte, D.; García-Ruiz, J. M.; Mota, A. J.; Justicia, J.; Cuerva, J. M. Ti(III)-Catalyzed Cyclizations of Ketoepoxypolyprenes: Control over the Number of Rings and Unexpected Stereoselectivities. J. Am. Chem. Soc. 2014, 136, 6943-6951.
20. Del Valle, L.; Stille, J. K.; Hegedus, L. S. Palladium-Catalyzed Coupling of Allylic Acetates with Aryl- and Vinylstannanes. J. Org. Chem. 1990, 55, 3019-3023.
21. Sun, Y.; Li, R.; Zhang, W.; Li, A. Total Synthesis of Indotertine A and Drimentines A, F, and G. Angew. Chem., Int. Ed. 2013, 52, 9201-9204.
22. Pommier, A.; Pons, J. M. Recent Advances in b-Lactone Chemistry. Synthesis review 1993, 23, 441-459.
23. Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-W.; Cheung, K.-K. Investigation of Mn(III)-Based Oxidative Free Radical Cyclization Reactions toward the Synthesis of Triptolide: The Effects of Lanthanide Triflates and Substituents on Stereoselectivity. J. Am. Chem. Soc. 2000, 122, 1658-1663.
24. Schmittel, M.; Haeuseler, A. One-Electron Oxidation of Metal Enolates and Metal Phenolates. J. Organomet. Chem. 2002, 661, 169-179.
25. Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y. Atom-Transfer Tandem Radical Cyclization Reactions Promoted by Lewis Acids. Angew. Chem., Int. Ed. 2002, 41, 3014-3017.
26. Yang, D.; Zheng, B.-F.; Gao, Q.; Gu, S.; Zhu, N.-Y. Enantioselective PhSe-Group-Transfer Tandem Radical Cyclization Reactions Catalyzed by a Chiral Lewis Acid. Angew. Chem., Int. Ed. 2006, 45, 255-258.
27. Brazeau, J.-F.; Mochirian, P.; Prévost, M.; Guindon, Y. Stereopentads Derived from a Sequence of Mukaiyama Aldolization and Free Radical Reduction on a-Methyl-b-alkoxy Aldehydes: A General Strategy for Efficient Polypropionate Synthesis. J. Org. Chem. 2009, 74, 64-74.
28. Odani, A.; Ishihara, K.; Ohtawa, M.; Tomoda, H.; Omura, S.; Nagamitsu, T. Total Synthesis of Pyripyropene A. Tetrahedron 2011, 67, 8195-8203.
29. Evans, D. A.; Chapman, K. T. The Directed Reduction of b-Hydroxy Ketones Employing Me4NHB(OAc)3. Tetrahedron Lett. 1986, 27, 5939-5942.
30. Hong, X.; Mejía-Oneto, J. M.; France, S.; Padwa, A. Photodesulfonylation of Indoles Initiated by Electron Transfer from Triethylamine. Tetrahedron Lett. 2006, 47, 2409-2412.
31. Kageyama, Y.; Ohshima, R.; Sakurama, K.; Fujiwara, Y.; Tanimoto, Y.; Yamada, Y.; Aoki, S. Photochemical Cleavage Reactions of 8-Quinolinyl Sulfonates in Aqueous Solution. Chem. Pharm. Bull. 2009, 57, 1257-1266.
32. Hamann, B. C.; Hartwig, J. F. Palladium-Catalyzed Direct a-Arylation of Ketones. Rate Acceleration by Sterically Hindered Chelating Ligands and Reductive Elimination from a Transition Metal Enolate Complex. J. Am. Chem. Soc. 1997, 119, 12382-12383.
33. Palucki, M.; Buchwald, S. L. Palladium-Catalyzed a-Arylation of Ketones. J. Am. Chem. Soc. 1997, 119, 11108-11109.
34. Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Palladium-Catalyzed Regioselective Mono- and Diarylation Reactions of 2-Phenylphenols and Naphthols with Aryl Halides. Angew. Chem., Int. Ed. 1997, 36, 1740-1742.
35. Martín, R.; Buchwald, S. L. An Improved Protocol for the Pd-Catalyzed a-Arylation of Aldehydes with Aryl Halides. Org. Lett. 2008, 10, 4561-4564.
36. Deppermann, N.; Thomanek, H.; Prenzel, A. H.; Maison, W. Pd-Catalyzed Assembly of Spirooxindole Natural Products: A Short Synthesis of Horsfiline. J. Org. Chem. 2010, 75, 5994-6000.
37. Honda, T.; Sakamaki, Y. Palladium-Catalyzed Intramolecular γ-Lactam Formation of an Aryl Halide and an Enolate: Synthesis of Isoindolobenzazepine Alkaloids, Lennoxamine, 13-Deoxychilenine, and Chilenine. Tetrahedron Lett. 2005, 46, 6823-6825.
38. Liao, X.; Stanley, L. M.; Hartwig, J. F. Enantioselective Total Syntheses of (-)-Taiwaniaquinone H and (-)-Taiwaniaquinol B by Iridium-Catalyzed Borylation and Palladium-Catalyzed Asymmetric a-Arylation. J. Am. Chem. Soc. 2011, 133, 2088-2091.
39. Johnson, T.; Pultar, F.; Menke, F.; Lautens, M. Palladium-Catalyzed a-Arylation of Vinylogous Esters for the Synthesis of γ, γ-Disubstituted Cyclohexenones. Org. Lett. 2016, 18, 6488-6491.
40. Hou, W.-Y.; Wu, Y.-K. Palladium-Catalyzed a-Arylation of Cyclic Vinylogous Esters for the Synthesis of γ-Arylcyclohexenones and Total Synthesis of Aromatic Podocarpane Diterpenoids. Org. Lett. 2017, 19, 1220-1223.
41. Gemal, A. L.; L., L. J. Lanthanoids in Organic Synthesis. 6. Reduction of a-Enones by Sodium Borohydride in the Presence of Lanthanoid Chlorides: Synthetic and Mechanistic Aspects. J. Am. Chem. Soc. 1981, 103, 5454-5459.
42. Luche, J. L. Lanthanides in Organic Chemistry. 1. Selective 1,2 Reductions of Conjugated Ketones. J. Am. Chem. Soc. 1978, 100, 2226-2227.
43. Stork, G.; Danheiser, R. L. The Regiospecific Alkylation of Cyclic b-Diketone Enol Ethers. A General Synthesis of 4-Alkylcyclohexenones. J. Org. Chem. 1973, 38, 1775-1776.
44. Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837-7042.
45. Kende, A. S.; Fludzinski, P. The Stork-Danheiser Kinetic Alkylation Procedure: 3-Ethoxy-6-methyl-2-cyclohexen-1-one. Organic Syntheses 1986, 64, 68-70.
46. Mukhopadhyay, T.; Seebach, D. Substitution of HMPT by the Cyclic Urea DMPU as a Cosolvent for Highly Reactive Nucleophiles and Bases. Helv. Chim. Acta 1982, 65, 385-391.
47. Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. Reactions of Carbonyl Compounds with Grignard Reagents in the Presence of Cerium Chloride. J. Am. Chem. Soc. 1989, 111, 4392-4398.
48. Liu, H.-J.; Shia, K.-S.; Shang, X.; Zhu, B.-Y. Organocerium Compounds in Synthesis. Tetrahedron 1999, 55, 3803-3830.
49. Liu, H.-J.; Zhu, B.-Y. Efficient addition of Cerium(III) Enolate of Ethyl Acetate to Ketones: Application to the Synthesis of b-Ethoxycarbonylmethyl a, b-Unsaturated Ketones. Can. J. Chem. 1991, 69, 2008-2013.
50. Marcantoni, E.; Sambri, L. 1.08 Organocerium Reagents. In Comprehensive Organic Synthesis II, 2014; pp 267-277.
51. Majetich, G.; Hicks, R.; Zhang, Y.; Tian, X.; Feltman, T. L.; Fang, J.; Duncan, S., Jr. Use of Conjugated Dienones in Cyclialkylations: The Total Syntheses of (±)-Barbatusol, (±)-Pisiferin, (±)-Deoxofaveline, (±)-Xochitlolone, and (±)-Faveline. J. Org. Chem. 1996, 61, 8169-8185.
52. Majetich, G.; Liu, S.; Fang, J.; Siesel, D.; Zhang, Y. Use of Conjugated Dienones in Cyclialkylations: Total Syntheses of Arucadiol, 1,2-Didehydromiltirone, (±)-Hinokione, (±)-Nimbidiol, Sageone, and Miltirone. J. Org. Chem. 1997, 62, 6928-6951.
53. Roosen, P. C.; Vanderwal, C. D. A Formal Enantiospecific Synthesis of 7,20-Diisocyanoadociane. Angew. Chem., Int. Ed. 2016, 55, 1-6.
54. Murelli, R. P.; Cheung, A. K.; Snapper, M. L. Conformationally Restricted (+)-Cacospongionolide B Analogues. Influence on Secretory Phospholipase A2 Inhibition. J. Org. Chem. 2007, 72, 1545-1552.
55. Crabtree, R.; Mander, L. N.; Sethi, S. P. Synthesis of b-Keto Esters by C-Acylation of Preformed Enolates with Methyl Cyanoformate: Preparation of Methyl (1a,4ab,8aa)-2-oxodecahydro-1-naphthoate. Organic Syntheses 1992, 70, 256-271.
56. O'Brien, S.; Smith, D. C. C. The Reduction of Indole and Carbazole by Metal–Ammonia Solutions. J. Chem. Soc. 1960, 0, 4609-4612.
57. Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Hydride Reduction by a Sodium Hydride-Iodide Composite. Angew. Chem., Int. Ed. 2016, 55, 3719-3723.
58. Ashmore, J. W.; Helmkamp, G. K. Improved Procedure for the Dissolving Metal Reduction of Indole and Carbazole. Org. Prep. Proced. Int. 1976, 8 (5), 223-225.
59. Ali, M. H.; Buchwald, S. L. An Improved Method for the Palladium-Catalyzed Amination of Aryl Iodides. J. Org. Chem. 2001, 66, 2560-2565.
60. Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. One-Pot Synthesis of Carbazoles by Palladium-Catalyzed N-Arylation and Oxidative Coupling. Chem. Commun. 2007, 4516-4518.
61. Liégault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. Intramolecular Pd(II)-Catalyzed Oxidative Biaryl Synthesis Under Air: Reaction Development and Scope. J. Org. Chem. 2008, 73, 5022-5028.
62. Wei, Y.; Deb, I.; Yoshikai, N. Palladium-Catalyzed Aerobic Oxidative Cyclization of N-Aryl Imines: Indole Synthesis from Aniines and Ketones. J. Am. Chem. Soc. 2012, 134, 9098-9101.
63. Root, K. S.; Hill, C. L.; Lawrence, L. M.; Whitesides, G. M. The Mechanism of Formation of Grignard Reagents: Trapping of Free Alkyl Radical Intermediates by Reaction with Tetramethylpiperidine-TV-oxyl1. J. Am. Chem. Soc. 1989, 111, 5405-5412.
64. Wentworth, A. D.; Wentworth, P., Jr.; Mansoor, U. F.; Janda, K. D. A Soluble Polymer-Supported Triflating Reagent: A High-Throughput Synthetic Approach to Aryl and Enol Triflates. Org. Lett. 2000, 2, 477-480.
65. Andre, J. D.; Dormoy, J. R.; Heymes, A. O-Demethylation of Opioid Derivatives with Methane Sulfonic Acid/ Methionine: Application to the Synthesis of Naloxone and Analogues. Synth. Commun. 1992, 22, 2313-2327.
66. Lima, H. M.; Sivappa, R.; Yousufuddin, M.; Lovely, C. J. Total Synthesis of 7'-Sesmethylkealiiquinone, 4'-Desmethoxykealiiquinone, and 2-Deoxykealiiquinone. J. Org. Chem. 2014, 79, 2481-2490.
67. Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. N-N-Coupled Indolo-Sesquiterpene Atropo-Diastereomers from a Marine-Derived Actinomycete. Eur. J. Org. Chem. 2012, 2012, 5256-5262.
電子全文 電子全文(網際網路公開日期:20241119)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top