跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊雅雱
研究生(外文):Yang, Ya-Yang
論文名稱:塑膠奈粒對水蚤能量分配之影響與其生殖毒性
論文名稱(外文):Effects of nanoplastics on energy budget and their reproductive responses at Daphnia magna
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
口試委員:李篤中周珊珊童心欣
口試委員(外文):Lee, Duu-JongChou, Shan-ShanTung, Hsin-Hsin
口試日期:2020-07-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:塑膠奈粒聚苯乙烯大水蚤慢毒性試驗能量分配評估
外文關鍵詞:nanoplasticspolystyreneDaphnia magnachronic toxicity testdynamic energy budget
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環境中大量的塑膠微粒因人類的生產和使用而日俱增,這些微粒可被進一步分解成塑膠奈粒,而難以被廢水處理和攔截。除此之外,塑膠奈粒容易與生物長期接觸,可能會干擾生物能量攝取並對其生長與生殖造成影響。為釐清塑膠奈粒對於環境生物的衝擊,本研究選用聚苯乙烯(polystyrene, PS)為塑膠奈粒,大水蚤(Daphnia magna)為試驗生物,以7天能量分配(dynamic energy budget, DEB)與21天慢毒性試驗評估不同濃度塑膠奈粒對水蚤的生長、繁殖及能量分配的關聯性。結果顯示PS塑膠奈粒對水蚤21日半致死濃度(LC50)和半數生殖抑制濃度(IC50)分別為8.74 mg/L與5.24 mg/L,均具有一定程度上的生殖抑制毒性。研究結果發現,PS塑膠奈粒濃度在7.5 mg/L以上,不僅會促使水蚤蛻皮頻率增加,也會造成水蚤母代與子代體長變短,並延緩第一代水蚤子代產出時間和總子代數量減少。水蚤的能量分配評估結果也顯示當PS塑膠奈粒濃度為7.5–8.5 mg/L,即會造成能量中斷,進而使得水蚤停止繁殖;PS塑膠奈粒會干擾水蚤能量的攝取與額外增加蛻皮的能量,而抑制水蚤的生長與繁殖能力,長期暴露下會對水環境生物具有潛在危害性。
The existence of plastic particles (microplastics) in the aquatic environment are generally originated from human production and use. These microplastics can be further decomposed into nanoplastic particles, which are difficult to intercept and prone to contact with organisms for a long time. Besides, those nanoplastics can interfere with the energy intake, growth and reproduction of organisms. In order to clarify the impact of nanoplastics on organisms, this study investigated the correlation of the concentration of polystyrene (PS) nanoplastics on the growth, reproduction and energy budget of Daphnia magna by conducting 7-day dynamic energy budget (DEB) and 21-day chronic toxicity tests. The 21d-LC50 and 21d-IC50 of Daphnia magna were found to be 8.74 mg/L and 5.24 mg/L, respectively. The results of the chronic toxicity test showed that the body length of daphnids and their first generation of progeny became shorter when the concentration of PS nanoplastics was over 7.5 mg/L. However, the molting frequency of daphnids was increased. In addition, PS nanoplastics delayed the production time of the first-generation progeny as well as reduced the total number of offspring. The energy budget evaluation revealed that there was an energy interruption, which stopped the propagation of daphnids when the concentration of PS nanoplastics ranged between 7.5–8.5 mg/L. In summary, PS nanoplastics would induce the significant growth and reproduction inhibition of daphnids due to the reduction of the energy intake and the assimilation energy with increasing molting energy. Hence, nanoplastics would have far-reaching implications in ecological toxicity as the long-term exposure.
摘 要 I
Abstract II
致 謝 IV
目 錄 VII
表目錄 IX
圖目錄 X
第一章 前 言 1
1.1 研究背景 1
1.2 研究目的與項目 2
第二章 文獻回顧 3
2.1 塑膠奈粒的環境流布與毒性 3
2.1.1 塑膠奈粒的組成及特性 3
2.1.2 塑膠奈粒在環境中的傳輸 5
2.1.3 塑膠奈粒的生態毒性 6
2.2 水蚤特性及其在毒性試驗的應用 9
2.2.1 水蚤種類與外觀 9
2.2.2 水蚤生長特性與生殖方式 11
2.2.3 水蚤於毒性試驗之應用 12
2.3 塑膠奈粒對水蚤的毒性效應 14
2.4 能量分配對水蚤生長與生殖的影響 16
第三章 研究方法 19
3.1 研究架構 19
3.2 含塑膠奈粒之試驗水樣配製 21
3.3 塑膠奈粒表面特性分析 22
3.4 水蚤慢毒性試驗與流程 24
3.4.1 水蚤飼養 24
3.4.2 水蚤毒性試驗流程 25
3.4.3 水蚤觀察終點之判定 27
3.4.4 水蚤能量分配評估 29
3.5 數據分析 34
第四章 結果與討論 35
4.1 塑膠奈粒表面特性 35
4.1.1 塑膠奈粒特性的表面型態與粒徑 35
4.1.2 PS塑膠奈粒表面官能基 37
4.2 塑膠奈粒影響水蚤生殖毒性 39
4.2.1 塑膠奈粒對水蚤的致死與生殖抑制濃度 39
4.2.2 塑膠奈粒濃度對水蚤的生長影響 41
4.2.3 塑膠奈粒對水蚤的繁殖毒性效應 47
4.3 塑膠奈粒對水蚤能量分配影響 50
4.3.1 PS濃度對水蚤同化率和維持率的關係 51
4.3.2 PS濃度對水蚤生長和繁殖能量的關係 53
第五章 結論與建議 56
5.1 結論 56
5.2 建議 56
參考文獻 57
Aljaibachi, R. and Callaghan, A. (2018) ''Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability'',Journal of Life & Environmental Sciences, 6, e4601.
Andrady, A. L. (2011) ''Microplastics in the marine environment'', Marine Pollution Bulletin, 62(8), 1596−1605.
Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M. (2009) ''Accumulation and fragmentation of plastic debris in global environments'', Plastics, the Environment & Human Health, 364, 1985−1998.
Baun, A., Sørensen, S. N., Rasmussen, R. F., Hartmann, N. B., Koch, C. B. (2008) ''Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60'', Aquatic Toxicology, 86(3), 379−387.
Bergami, E., Bocci, E., Vannuccini, M. L., Monopoli, M., Salvati A., Dawson, K. A., Corsi, I. (2016) ''Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae'', Ecotoxicology & Environmental Safety, 123, 18−25.
Besseling, E., Quik, J. T., Sun, M., Koelmans, A. A. (2017) ''Fate of nano-and microplastic in freshwater systems: A modeling study'', Environmental Pollution, 220, 540−548.
Besseling, E., Wang, B., Lürling, M., Koelmans, A. A. (2014) ''Nanoplastic affects growth of S. obliquus and reproduction of Daphnia magna '', Environmental Science & Technology, 48(20), 12336−12343.
Bohrer, R. N. and Lampert, W. (1988) ''Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna Straus'', Functional Ecology, 463−471.
Bozich, J. S., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., Klaper, R. D. (2014) ''Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna'', Environmental Science: Nano, 1(3), 260-270.
Brandts, I.,Teles, M., Gonçalves, A. P., Barreto, A., Franco-Martinez, L.,Tvarijonaviciute, A., Martins, M. A., Soares, A.M.V.M., Tort, L., Oliveira, M. (2018) ''Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine'', Science of the Total Environment, 634, 775−784.
Brun, N. R., Beenakker, M. M., Hunting, E. R., Ebert, D., Vijver, M. G. (2017) ''Brood pouch-mediated polystyrene nanoparticle uptake during Daphnia magna embryogenesis'', Nanotoxicology, 11(8), 1059−1069
Cai, L., Hu, L., Shi, H., Ye, J., Zhang, Y., Kim, H. (2018) ''Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics'', Chemosphere, 197, 142−151.
Carr, S. A., Liu, J., Tesoro, A. G. (2016) ''Transport and fate of microplastic particles in wastewater treatment plants'', Water Research, 91, 174−182.
Cedervall, T., Hansson, L. A., Lard, M., Frohm, B., Linse, S. (2012) ''Food chain transport of nanoparticles affects behaviour and fat metabolism in fish'', Public Library of Science one, 7(2), e32254.
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Galloway, T. S. (2015) ''The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus'', Environmental Science & Technology, 49(2), 1130−1137.
Cui, R., Kim, S. W., An, Y. J. (2017) ''Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata'', Scientific Reports, 7(1), 1−10.
De Felice, B., Sabatini, V., Antenucci, S., Gattoni, G., Santo, N., Bacchetta, R., Ortenzi, M. A., Parolini, M. (2019) ''Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna'', Chemosphere, 231, 423−431.
Della Torre, C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K. A., Corsi, I. (2014) ''Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus'', Environmental Science & Technology, 48(20), 12302−12311.
Depledge, M. H., Aagaard, A., Györkös, P. (1995) ''Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers'', Marine Pollution Bulletin, 31(1-3), 19-27.
Drechsler, A. and Grundke, K. (2005) ''The influence of electrolyte ions on the interaction forces between polystyrene surfaces'', Colloids & Surfaces A: Physicochemical & Engineering Aspects, 264(1-3), 157−165.
Ebert, D. (2005) Ecology, Epidemiology, and Evolution of Parasitism in Daphnia, National Center for Medicine.
Fox, H. M. (1952) ''Anal and oral water intake by Crustacea'', Nature, 169(4312), 1051−1052.
Gillis, P. L., Chow-Fraser, P., Ranville, J. F., Ross, P. E., Wood, C. M. (2005) ''Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna'', Aquatic Toxicology, 71(2), 143−154.
Giraudo, M., Douville, M., Cottin, G., Houde, M. (2017) ''Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects'', Public Library of Science one, 12(2).
Gonçalves, R. A., Rossetto, A. L. D. O. F., Nogueira, D. J., Vicentini, D. S., Matias, W. G. (2018) ''Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests'', Aquatic Toxicology, 197, 32−40.
Gong, N., Shao, K., Li, G., Sun, Y. (2016) ''Acute and chronic toxicity of nickel oxide nanoparticles to Daphnia magna: The influence of algal enrichment'', Nanoimpact, 3, 104−109.
Gophen, M., Geller, W. (1984) ''Filter mesh size and food particle uptake by Daphnia'', Oecologia, 64(3), 408−412.
Gourmelon, G. (2015) ''Global plastic production rises, recycling lags'', World Watch Institute. http://www.plastic-resource-center.com/wp-content/uploads/2018/11/Global-Plastic-Production-RisesRecycling-Lags.pdf
Hammers‐Wirtz, M. and Ratte, H. T. (2000) ''Offspring fitness in Daphnia: is the Daphnia reproduction test appropriate for extrapolating effects on the population level?'', Environmental Toxicology & Chemistry: An International Journal, 19(7), 1856−1866.
Hu, D., Shen, M., Zhang, Y., Zeng, G. (2019) ''Micro(nano)plastics: An un-ignorable carbon source'' Science of the Total Environment, 657, 108−110.
Hurley, R. R. and Nizzetto, L. (2018) ''Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks'', Current Opinion in Environmental Science & Health, 1, 6−11.
Jager, T., Vandenbrouck, T., Baas, J., De Coen, W. M., Kooijman, S. A. (2010) ''A biology-based approach for mixture toxicity of multiple endpoints over the life cycle'', Ecotoxicology, 19(2), 351−361.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perrman, M., Andrad, A., Narayan, R., Law, K. L. (2015) ''Plastic waste inputs from land into the ocean'', Science, 347, 768−771.
Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A., Cedervall, T. (2020) ''Long-term exposure to nanoplastics reduces life-time in Daphnia magna'', Scientific Reports, 10(1), 1−7.
Kooijman, B. and Kooijman, S. A. L. M. (2010) ''Dynamic energy budget theory for metabolic organisation'', Cambridge University Press.
Lampert, W. and Bohrer, R. (1984) ''Effect of food availability on the respiratory quotient of Daphnia magna'', Comparative Biochemistry & Physiology Part A: Physiology, 78(2), 221−223.
Lee, B. T. and Ranville, J. F. (2012) ''The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna'', Journal of Hazardous Materials, 213, 434−439.
Li, M., Czymmek, K. J., Huang, C. P. (2011) ''Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution'', Journal of Hazardous Materials, 187(1-3), 502−508.
Liu, S., Zeng, P., Li, X., Thuyet, D. Q., Fan, W. (2019) ''Effect of chronic toxicity of the crystalline forms of TiO2 nanoparticles on the physiological parameters of Daphnia magna with a focus on index correlation analysis'', Ecotoxicology & Environmental Safety, 181, 292−300.
Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Huang, Y., Zhao, Y. (2019) ''Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex'', Chemosphere, 215, 74−81.
Lynch, M., Weider, L. J., Lampert, W. (1986) ''Measurement of the carbon balance in Daphnia 1'', Limnology and Oceanography, 31(1), 17−34.
Mackevica, A., Skjolding, L. M., Gergs, A., Palmqvist, A., Baun, A. (2015) ''Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions'', Aquatic Toxicology, 161, 10−16.
Martin-Creuzburg, D., Westerlund, S. A., Hoffmann, K. H. (2007) ''Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatography–mass spectrometry (LC–MS)'', General & Comparative Endocrinology, 151(1), 66−71.
Mattsson, K., Adolfsson, K., Ekvall, M. T., Borgström, M. T., Linse, S., Hansson, L. A., Cedervall, T., Prinz, C. N. (2016) ''Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna'', Nanotoxicology, 10(8), 1160−1167.
Mattsson, K., Ekvall, M. T., Hansson, L. A., Linse, S., Malmendal, A., Cedervall, T. (2015) ''Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles'', Environmental Science & Technology, 49(1), 553−561.
Mattsson, K., Jocic, S., Doverbratt, I., Hansson, L. A. (2015) ''Nanoplastics in the aquatic environment'', Microplastic Contamination in Aquatic Environments, 379−399.
McCauley, E., Murdoch, W. W., Nisbet, R. M., Gurney, W. S. (1990) ''The physiological ecology of Daphnia: development of a model of growth and reproduction'', Ecology, 71(2), 703−715.
Muck, P. (1984) ''An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans'', Archiv für Hydrobiologie. Supplementband. Monographische Beiträge, 66(2), 157−179.
Noonburg, E. G., Nisbet, R. M., McCauley, E., Gurney, W. S. C., Murdoch, W. W., De Roos, A. M. (1998) ''Experimental testing of dynamic energy budget models'', Functional Ecology, 12(2), 211−222.
Pereira, J. L. and Gonçalves, F. (2007) ''Effects of food availability on the acute and chronic toxicity of the insecticide methomyl to Daphnia spp'', Science of the Total Environment, 386(1-3), 9−20.
Petersen, E. J., Akkanen, J., Kukkonen, J. V., Weber Jr, W. J. (2009) ''Biological uptake and depuration of carbon nanotubes by Daphnia magna'', Environmental Science & Technology, 43(8), 2969−2975.
Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., Lowry, G. V. (2010) ''Estimating attachment of nano-and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model'', Environmental Science & Technology, 44(12), 4531−4538.
Pieters, B. J., Jager, T., Kraak, M. H., Admiraal, W. (2006) ''Modeling responses of Daphnia magna to pesticide pulse exposure under varying food conditions: intrinsic versus apparent sensitivity'', Ecotoxicology, 15(7), 601−608.
Porter, K. G., Gerritsen, J., Orcutt Jr, J. D. (1982) ''The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia'', Limnology & Oceanography, 27(5), 935−949.
Pruter, A. T. (1987) ''Sources, quantities and distribution of persistent plastics in the marine environment'', Marine Pollution Bulletin, 18(6), 305−310.
Renzi, M., Grazioli, E., Blašković, A. (2019) ''Effects of different microplastic types and surfactant-microplastic mixtures under fasting and feeding conditions: A case study on Daphnia magna'', Bulletin of Environmental Contamination & Toxicology, 103(3), 367−373.
Richman, S. (1958) ''The transformation of energy by Daphnia pulex'', Ecological Monographs, 28(3), 273−291.
Rinke, K. and Vijverberg, J. (2005) ''A model approach to evaluate the effect of temperature and food concentration on individual life-history and population dynamics of Daphnia'', Ecological Modelling, 186(3), 326−344.
Rinke, K., Hülsmann, S., Mooij, W. M. (2008) ''Energetic costs, underlying resource allocation patterns, and adaptive value of predator‐induced life‐history shifts'', Oikos, 117(2), 273−285.
Rist, S., Baun, A., Hartmann, N. B. (2017) ''Ingestion of micro-and nanoplastics in Daphnia magna–Quantification of body burdens and assessment of feeding rates and reproduction'', Environmental Pollution, 228, 398−407.
Rosenkranz, P., Chaudhry, Q., Stone, V., Fernandes, T. F. (2009) ''A comparison of nanoparticle and fine particle uptake by Daphnia magna'', Environmental Toxicology & Chemistry: An International Journal, 28(10), 2142−2149.
Santo, N., Fascio, U., Torres, F., Guazzoni, N., Tremolada, P., Bettinetti, R., Mantecca, P., Bacchetta, R. (2014) ''Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: does size matter? '', Water Research, 53, 339−350.
Schrank, I., Trotter, B., Dummert, J., Scholz-Böttcher, B. M., Löder, M G., Laforsch, C. (2019) ''Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna'', Environmental Pollution, 255, 113233.
Sheavly, S. B. and Register, K. M. (2007) ''Marine debris and plastics: Environmental concerns, sources, impacts and solutions'', Journal of Polymers & the Environment, 15(4), 301−305.
Shen, M., Zhu, Y., Zhang, Y., Zeng, G., Wen, X., Yi, H., Ye, S., Ren, X., Song, B. (2019) ''Micro(nano)plastics: Unignorable vectors for organisms'', Marine Pollution Bulletin, 139, 328−331.
Skinner, D. M. (1985) ''Interacting factors in the control of the crustacean molt cycle'', American Zoologist, 25(1), 275−284.
Sudhakar, M., Trishul, A., Doble, M., Kumar, S., Jahan, S., Inbakandan, D., Viduthalai, R. R., Umadevi, V. R., Murthy, P. S., Venkatesan, R. (2007) ''Biofouling and biodegradation of polyolefins in ocean waters'', Polymer Degradation & Stability, 92(9), 1743−1752.
Urabe, J. and Watanabe, Y. (1990) ''Influence of food density on respiration rate of two crustacean plankters, Daphnia galeata and Bosmina longirostris'', Oecologia, 82(3), 362−368.
Urabe, J. and Watanabe, Y. (1991) ''Effect of food concentration on the assimilation and production efficiencies of Daphnia galeata GO Sars (Crustacea: Cladocera)'', Functional Ecology, 635−641.
Urabe, J. and Watanabe, Y. (1991) ''Effect of food conditions on the bacterial feeding of Daphnia galeata'', Hydrobiologia, 225(1), 121−128.
Vance, M. E., Kuiken, T., Vejerano, E., McGinnis, S. P., Hochella Jr, M. F., Rejeski, D., Hull, M. S. (2015) ''Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory'', Beilstein Journal of Nanotechnology, 6, 1769−1780.
Vanoverbeke, J. (2008) ''Modeling individual and population dynamics in a consumer–resource system: behavior under food limitation and crowding and the effect on population cycling in Daphnia'', Ecological Modelling, 216(3-4), 385−401.
Ward, J. E. and Kach, D. J. (2009) ''Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves'', Marine Environmental Research, 68(3), 137−142.
Watters, D. L., Yoklavich, M. M., Love, M. S., Schroeder, D. M. (2010) ''Assessing marine debris in deep seafloor habitats off California'', Marine Pollution Bulletin, 60(1), 131−138.
Wollenberger, L., Halling-Sørensen, B., Kusk, K. O. (2000) ''Acute and chronic toxicity of veterinary antibiotics to Daphnia magna'', Chemosphere, 40(7), 723−730.
Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C., Jambeck, J. (2017) ''Plastic as a persistent marine pollutant'', Annual Review of Environment & Resources, 42, 1−26.
Wright, S. L., Rowe, D., Thompson, R. C., Galloway, T. S. (2013) ''Microplastic ingestion decreases energy reserves in marine worms'', Current Biology, 23(23), R1031−R1033.
Zhao, C. M. and Wang, W. X. (2011) ''Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna'', Environmental Toxicology & Chemistry, 30(4), 885−892.
Zhang, W., Liu, Z., Tang, S., Li, D., Jiang, Q., Zhang, T. (2020) ''Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex'', Chemosphere, 238, 124563.
行政院農業委員會,「農藥對水生物毒性分類及其審核管理規定」,1998年。
行政院環保署,「生物急毒性檢測方法-水蚤靜水式法(NIEA B901.13B)」,2013年。
胡芳瑜,「半導體廢水主要毒性物質對水蚤及斑馬魚胚胎混合毒性之研究」,國立交通大學環境工程所碩士論文,2015年。
陳奕如,「銅離子影響磷酸三(2-正丁氧乙基)酯的水蚤生物累積性與毒性之研究」,國立交通大學環境工程所碩士論文,2015年。
電子全文 電子全文(網際網路公開日期:20250719)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top