跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋承祐
研究生(外文):Sung, Cheng-Yu
論文名稱:探討合併 SAHA 與 2-DG 在小細胞肺癌中的抗癌效果
論文名稱(外文):Investigation of the anticancer effects of SAHA in combination with 2-DG in small cell lung cancer
指導教授:梁美智梁美智引用關係
指導教授(外文):Liang, Mei-Chih
口試委員:王雲銘楊裕雄梁美智
口試委員(外文):Wang, Yun-MingYang, Yuh-ShyongLiang, Mei-Chih
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:小細胞肺癌組蛋白去乙醯酶抑制劑糖解作用抑制劑
外文關鍵詞:Small cell lung cancerSCLCHDAC inhibitorSAHAGlycolysis inhibitor2-DG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌是全球癌症發病率和死亡率的主要原因。雖然小細胞肺癌(Small cell lung cancer; SCLC)僅佔所有肺癌病例的 15%,但其快速生長、早期轉移和抗藥 性導致其致死率高。儘管使用合併 etoposide 及 cisplatin 進行一線化療的反應率 很高,但大多數患者會復發並產生抗藥性。不幸的是,即使使用 topotecan 進行 二線化療也不能有效提高五年生存率。SAHA(Vorinostat)是一種 HDAC 抑製 劑,其具有調控許多抑癌基因轉錄的能力,並在許多癌症細胞株中顯示出抗癌活 性。2-Deoxy-D-glucose(2-DG)是一種糖解作用抑製劑,其可藉由破壞癌細胞的 能量代謝途徑來抑制細胞生長並誘導細胞凋亡。在本研究中,我們藉由檢測細胞 存活率、細胞凋亡、細胞週期分佈和特定訊號傳遞路徑來研究 SAHA 和 2-DG 合 併使用在小細胞肺癌中的抗癌作用。我們的研究表明,與單獨使用 SAHA 或 2- DG 相比,合併使用更能有效地抑制細胞增殖與誘導細胞凋亡。我們還發現,與 單獨使用任何藥物相比,SAHA 與 2-DG 的合併使用導致了更多的 sub-G1 期細 胞週期堆積。此外,我們的研究結果顯示,在 SAHA 單獨使用或與 2-DG 合併使 用時,SAHA 都能夠乙醯化 α-tubulin 和 histone H3。此外,SAHA 和 2-DG 的合 併使用劑量依賴性地降低 S6 的磷酸化。總結來說,這些結果表明 SAHA 和 2- DG 均具有抗癌作用,而合併使用能夠更有效地增加抗癌活性。我們認為此種合 併療法有潛力成為小細胞肺癌患者可靠的治療選擇。
Lung cancer is the leading cause of cancer incidence and mortality worldwide. Although small cell lung cancer (SCLC) accounts for only 15% of all lung cancer cases, its rapid progression, early metastasis and drug resistance lead to high mortality. The response rate to the first-line chemotherapy with the combination of etoposide and cisplatin is high initially, but most patients experience recurrent disease and develop drug resistance. Unfortunately, even the second-line chemotherapy with topotecan cannot effectively improve the five-year survival rate. SAHA (Vorinostat), a HDAC inhibitor, has the ability to regulate the transcription of many tumor suppressor genes and demonstrates anticancer activities in many cancer cell lines. 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, inhibits cell growth and induces cell apoptosis by disrupting the energy metabolism of cancer cells. In this study, we investigate the anticancer effects of the combination of SAHA and 2-DG in SCLC by examining cell viability, cell apoptosis, cell cycle distribution and specific signaling pathways. Our data suggested that the combination treatment inhibited cell proliferation and induced cell apoptosis more effectively than either SAHA or 2-DG alone. We also found that SAHA in combination with 2-DG induced more cell cycle accumulation in sub-G1 phase compared with any drug alone. Moreover, our results indicated that SAHA alone or in combination with 2-DG had the ability to acetylate α-tubulin and histone H3. Besides, the combination of SAHA and 2-DG dose-dependently decreased the S6 phosphorylation. In conclusion, these results implied that both SAHA and 2-DG exhibited anticancer effects, while the combination treatment was more effective in these anticancer activities in SCLC cells. We suggest that this combination treatment has the potential to become a promising treatment option for patients with SCLC.
摘要.................................................................................................................................I
Abstract..........................................................................................................................II Contents........................................................................................................................III List of abbreviations.....................................................................................................VI Chapter 1. Introduction..................................................................................................1
1.1 Small cell lung cancer (SCLC) ...............................................................................1
1.2 Treatments for SCLC...............................................................................................1
1.3 Histone deacetylases (HDACs) ...............................................................................2
1.3.1 Functions of HDACs.......................................................................................2 1.3.2 HDAC inhibitors.............................................................................................3 1.3.3 SAHA..............................................................................................................3
1.4 Energy metabolism of cancer cells...........................................................................3 1.4.1 Warburg effect.................................................................................................3 1.4.2 Glycolysis inhibitors.......................................................................................4 1.4.3 2-DG................................................................................................................5
Specific aims..................................................................................................................6 Chapter 2. Materials and Methods.................................................................................7 2.1 Materials...................................................................................................................7
2.1.1 Chemicals........................................................................................................7 2.1.2 Buffers.............................................................................................................8 2.1.3 Reagents..........................................................................................................8 2.1.4 Cell culture media and reagents......................................................................9 2.1.5 Miscellaneous items........................................................................................9 2.1.6 Antibodies.......................................................................................................9
III
2.1.7 Equipment.....................................................................................................10 2.2 Methods..................................................................................................................10 2.2.1 Cell lines and culture.....................................................................................10 2.2.2 Cell viability assay........................................................................................11 2.2.3 Preparation of whole cell lysates...................................................................11 2.2.4 Protein assay..................................................................................................11 2.2.5 SDS-polyacrylamide gel preparation............................................................12
2.2.6 Western blot analysis....................................................................................12 2.2.7 Cell apoptosis analysis..................................................................................13 2.2.8 Cell cycle analysis.........................................................................................14 2.2.9 Hoechst 33342 nuclear staining....................................................................14 2.2.10 Statistical analysis.......................................................................................15
Chapter 3. Results........................................................................................................16 3.1 SAHA reduces cell viability in a dose-dependent manner in SCLC cells.............16 3.2 SAHA in combination with 2-DG effectively reduces cell viability in SCLC cells...............................................................................................................................16 3.3 SAHA in combination with 2-DG enhances apoptosis in SCLC cells..................17 3.4 SAHA in combination with 2-DG promotes apoptosis progression in SCLC cells...............................................................................................................................18 3.5 SAHA in combination with 2-DG induces cell cycle accumulation in sub-G1 phase in SCLC cells.....................................................................................................19 3.6 SAHA in combination with 2-DG induces nuclear morphological changes in SCLC cells...................................................................................................................19 3.7 SAHA in combination with 2-DG regulates SAHA- or 2-DG-related proteins in SCLC cells...................................................................................................................20
IV

Chapter 4. Discussion...................................................................................................22 Reference......................................................................................................................26 Figure 1. The effects of SAHA on cell viability in SCLC cells...................................32 Figure 2. The effects of SAHA, 2-DG, and a combination on cell viability in SCLC cells...............................................................................................................................33 Figure 3. The effects of SAHA, 2-DG, and a combination on protein expression of PARP in SCLC cells....................................................................................................34 Figure 4. Investigation of the effects of SAHA, 2-DG, and a combination on apoptosis progression in SCLC cells by annexin V-FITC and PI staining..................................35 Figure 5. Investigation of the effects of SAHA, 2-DG, and a combination on cell cycle distribution in SCLC cells by PI staining.....................................................................36 Figure 6. Investigation of the effects of SAHA, 2-DG, and a combination on nuclear morphology in SCLC cells by Hoechst 33342 staining...............................................37 Figure 7. The effects of SAHA, 2-DG, and a combination on protein expression of acetyl-α-tubulin, acetyl-histone H3, and p-S6 in SCLC cells......................................38 Appendix......................................................................................................................39 Table 1: Chemicals.......................................................................................................39 Table 2: Buffers............................................................................................................40 Table 3: Reagents.........................................................................................................41 Table 4: Antibodies......................................................................................................41 Table 5: Equipment......................................................................................................42
Aft, R. L., F. W. Zhang and D. Gius (2002). "Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death." Br J Cancer 87(7): 805-812.
Aghaee, F., J. Pirayesh Islamian and B. Baradaran (2012). "Enhanced radiosensitivity and chemosensitivity of breast cancer cells by 2-deoxy-d-glucose in combination therapy." J Breast Cancer 15(2): 141-147.
Alvarado-Luna, G. and D. Morales-Espinosa (2016). "Treatment for small cell lung cancer, where are we now?-a review." Transl Lung Cancer Res 5(1): 26-38.
Bose, P., Y. Dai and S. Grant (2014). "Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights." Pharmacol Ther 143(3): 323-336.
Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre and A. Jemal (2018). "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries." CA Cancer J Clin 68(6): 394-424.
Bubna, A. K. (2015). "Vorinostat-An Overview." Indian J Dermatol 60(4): 419. Byers, L. A. and C. M. Rudin (2015). "Small cell lung cancer: where do we go from
here?" Cancer 121(5): 664-672.
Carter, B. W., B. S. Glisson, M. T. Truong and J. J. Erasmus (2014). "Small cell lung carcinoma: staging, imaging, and treatment considerations." Radiographics 34(6): 1707-1721.
Chaitanya, G. V., A. J. Steven and P. P. Babu (2010). "PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration." Cell Commun Signal 8: 31.
Chen, B., Z. Tan, J. Gao, W. Wu, L. Liu, W. Jin, Y. Cao, S. Zhao, W. Zhang, Z. Qiu, D. Liu, X. Mo and W. Li (2015). "Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer." J Exp Clin
26
Cancer Res 34: 126.
Chen, D., A. Shen, G. Fang, H. Liu, M. Zhang, S. Tang, B. Xiong, L. Ma, M. Geng and J. Shen (2016). "Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer." Acta Pharm Sin B 6(1): 93-99.
Chen, Z., W. Lu, C. Garcia-Prieto and P. Huang (2007). "The Warburg effect and its cancer therapeutic implications." J Bioenerg Biomembr 39(3): 267-274.
Dasari, S. and P. B. Tchounwou (2014). "Cisplatin in cancer therapy: molecular mechanisms of action." Eur J Pharmacol 740: 364-378.
Feng, D., J. Wu, Y. Tian, H. Zhou, Y. Zhou, W. Hu, W. Zhao, H. Wei, B. Ling and C. Ma (2013). "Targeting of histone deacetylases to reactivate tumour suppressor genes and its therapeutic potential in a human cervical cancer xenograft model." PLoS One 8(11): e80657.
Fernández-Rodríguez, C., A. Salar, A. Navarro, E. Gimeno, S. Pairet, L. Camacho, M. Ferraro, S. Serrano, C. Besses, B. Bellosillo and B. Sanchez-Gonzalez (2016). "Anti- tumor activity of the combination of bendamustine with vorinostat in diffuse large B- cell lymphoma cells." Leuk Lymphoma 57(3): 692-699.
Ferreira, L. M. (2010). "Cancer metabolism: the Warburg effect today." Exp Mol Pathol 89(3): 372-380.
Gogvadze, V., B. Zhivotovsky and S. Orrenius (2010). "The Warburg effect and mitochondrial stability in cancer cells." Mol Aspects Med 31(1): 60-74.
Gorisch, S. M., M. Wachsmuth, K. F. Toth, P. Lichter and K. Rippe (2005). "Histone acetylation increases chromatin accessibility." J Cell Sci 118(Pt 24): 5825-5834.
Grant, S., C. Easley and P. Kirkpatrick (2007). "Vorinostat." Nat Rev Drug Discov 6(1): 21-22.
27

Gryder, B. E., Q. H. Sodji and A. K. Oyelere (2012). "Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed." Future Med Chem 4(4): 505- 524.
Huang, H. L., H. Y. Lee, A. C. Tsai, C. Y. Peng, M. J. Lai, J. C. Wang, S. L. Pan, C. M. Teng and J. P. Liou (2012). "Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo." PLoS One 7(8): e43645.
Inamura, K. (2017). "Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification." Front Oncol 7: 193.
Kalemkerian, G. P., W. Akerley, P. Bogner, H. Borghaei, L. Q. Chow, R. J. Downey, L. Gandhi, A. K. Ganti, R. Govindan, J. C. Grecula, J. Hayman, R. S. Heist, L. Horn, T. Jahan, M. Koczywas, B. W. Loo, Jr., R. E. Merritt, C. A. Moran, H. B. Niell, J. O'Malley, J. D. Patel, N. Ready, C. M. Rudin, C. C. Williams, Jr., K. Gregory and M. Hughes (2013). "Small cell lung cancer." J Natl Compr Canc Netw 11(1): 78-98.
Li, Y. and E. Seto (2016). "HDACs and HDAC Inhibitors in Cancer Development and Therapy." Cold Spring Harb Perspect Med 6(10).
Liberti, M. V. and J. W. Locasale (2016). "The Warburg Effect: How Does it Benefit Cancer Cells?" Trends Biochem Sci 41(3): 211-218.
Lin, W. H., T. K. Yeh, W. T. Jiaang, K. J. Yen, C. H. Chen, C. T. Huang, S. C. Yen, S. Y. Hsieh, L. H. Chou, C. P. Chen, C. H. Chiu, L. C. Kao, Y. S. Chao, C. T. Chen and J. T. Hsu (2014). "Evaluation of the antitumor effects of BPR1J-340, a potent and selective FLT3 inhibitor, alone or in combination with an HDAC inhibitor, vorinostat, in AML cancer." PLoS One 9(1): e83160.
Oladghaffari, M., J. P. Islamian, B. Baradaran, A. S. Monfared, A. Farajollahi, D. Shanehbandi and M. Mohammadi (2015). "High Efficiency Apoptosis Induction in Breast Cancer Cell Lines by MLN4924/2DG Co-Treatment." Asian Pac J Cancer Prev 16(13): 5471-5476.
28

Olinger, A., P. Muley and H. Tummala (2013). "Effect of 2-Deoxyglucose on Colorectal Cancer Cell Lines." The Journal of Undergraduate Research 11(5).
Pelicano, H., D. S. Martin, R. H. Xu and P. Huang (2006). "Glycolysis inhibition for anticancer treatment." Oncogene 25(34): 4633-4646.
Peserico, A. and C. Simone (2011). "Physical and functional HAT/HDAC interplay regulates protein acetylation balance." J Biomed Biotechnol 2011: 371832.
Populo, H., J. M. Lopes and P. Soares (2012). "The mTOR signalling pathway in human cancer." Int J Mol Sci 13(2): 1886-1918.
Qin, A. and G. P. Kalemkerian (2016). "Cisplatin, Etoposide, and Irinotecan for Relapsed Small-Cell Lung Cancer." Transl Cancer Res 5(Suppl 6): S1142-S1144.
Quoix, E. (2008). "Topotecan in the treatment of relapsed small cell lung cancer." Onco Targets Ther 1: 79-86.
Regzedmaa, O., H. Zhang, H. Liu and J. Chen (2019). "Immune checkpoint inhibitors for small cell lung cancer: opportunities and challenges." Onco Targets Ther 12: 4605- 4620.
Ropero, S. and M. Esteller (2007). "The role of histone deacetylases (HDACs) in human cancer." Mol Oncol 1(1): 19-25.
Rosato, R. R., J. A. Almenara, Y. Dai and S. Grant (2003). "Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells." Mol Cancer Ther 2(12): 1273-1284.
Rossi, A., M. Di Maio, P. Chiodini, R. M. Rudd, H. Okamoto, D. V. Skarlos, M. Fruh, W. Qian, T. Tamura, E. Samantas, T. Shibata, F. Perrone, C. Gallo, C. Gridelli, O. Martelli and S. M. Lee (2012). "Carboplatin- or cisplatin-based chemotherapy in first-
29

line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data." J Clin Oncol 30(14): 1692-1698.
Siegel, D., M. Hussein, C. Belani, F. Robert, E. Galanis, V. M. Richon, J. Garcia- Vargas, C. Sanz-Rodriguez and S. Rizvi (2009). "Vorinostat in solid and hematologic malignancies." J Hematol Oncol 2: 31.
Soldani, C. and A. I. Scovassi (2002). "Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update." Apoptosis 7(4): 321-328.
Tian, T., X. Li and J. Zhang (2019). "mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy." Int J Mol Sci 20(3).
Vander Heiden, M. G., L. C. Cantley and C. B. Thompson (2009). "Understanding the Warburg effect: the metabolic requirements of cell proliferation." Science 324(5930): 1029-1033.
Wang, J., Z. Jiang, L. Xiang, Y. Li, M. Ou, X. Yang, J. Shao, Y. Lu, L. Lin, J. Chen, Y. Dai and L. Jia (2014). "Synergism of ursolic acid derivative US597 with 2-deoxy-D- glucose to preferentially induce tumor cell death by dual-targeting of apoptosis and glycolysis." Sci Rep 4: 5006.
Witt, O., H. E. Deubzer, T. Milde and I. Oehme (2009). "HDAC family: What are the cancer relevant targets?" Cancer Lett 277(1): 8-21.
Xintaropoulou, C., C. Ward, A. Wise, H. Marston, A. Turnbull and S. P. Langdon (2015). "A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models." Oncotarget 6(28): 25677-25695.
Xu, W. S., R. B. Parmigiani and P. A. Marks (2007). "Histone deacetylase inhibitors: molecular mechanisms of action." Oncogene 26(37): 5541-5552.
Xu, X., Y. Lai and Z. C. Hua (2019). "Apoptosis and apoptotic body: disease message and therapeutic target potentials." Biosci Rep 39(1).
30

Zhang, D., Q. Fei, J. Li, C. Zhang, Y. Sun, C. Zhu, F. Wang and Y. Sun (2016). "2- Deoxyglucose Reverses the Promoting Effect of Insulin on Colorectal Cancer Cells In Vitro." PLoS One 11(3): e0151115.
Zhang, D., J. Li, F. Wang, J. Hu, S. Wang and Y. Sun (2014). "2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy." Cancer Lett 355(2): 176-183.
Zhang, S., B. Hu, X. Lv, S. Chen, W. Liu and Z. Shao (2019). "The Prognostic Role of Ribosomal Protein S6 Kinase 1 Pathway in Patients With Solid Tumors: A Meta- Analysis." Front Oncol 9: 390.
Zhang, Y., F. Huang, J. Wang, H. Luo and Z. Wang (2015). "2-DG-Regulated RIP and c-FLIP Effect on Liver Cancer Cell Apoptosis Induced by TRAIL." Med Sci Monit 21: 3442-3448.
Zhao, Y., D. Yu, H. Wu, H. Liu, H. Zhou, R. Gu, R. Zhang, S. Zhang and G. Wu (2014). "Anticancer activity of SAHA, a potent histone deacetylase inhibitor, in NCI- H460 human large-cell lung carcinoma cells in vitro and in vivo." Int J Oncol 44(2): 451-458.
Zhao, Z. and A. Shilatifard (2019). "Epigenetic modifications of histones in cancer." Genome Biol 20(1): 245.
Zilberman, Y., C. Ballestrem, L. Carramusa, R. Mazitschek, S. Khochbin and A. Bershadsky (2009). "Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6." J Cell Sci 122(Pt 19): 3531-3541.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊