跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張皓婷
研究生(外文):Chang, Hao-Ting
論文名稱:利用分子動態模擬探討單鏈DNA結合蛋白之C端結構機械性質
論文名稱(外文):Using Molecular Dynamics Simulation to Study the Structural and Mechanical Roles of the Intrinsically Disordered C-terminal Domain in Escherichia coli Single-Stranded DNA-Binding Protein (SSB)
指導教授:朱智瑋
指導教授(外文):Chu, Jhih-Wei
口試委員:蕭育源朱智瑋陳亭妏
口試委員(外文):Hsiao, Yu-YuanChu, Jhih-WeiChen, Tin-Wen
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:55
中文關鍵詞:單鏈DNA結合蛋白單股DNA固有無序鏈結分子分子動態模擬
外文關鍵詞:Single-Stranded DNA-Binding ProteinssDNAIntrinsically Disordered LinkerMolecular Dynamics Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌單鏈去氧核糖核酸結合蛋白(EcSSB)與單股去氧核糖核酸(ssDNA)的結合,具有高親和性但無序列專一性。EcSSB與ssDNA的結合可防止結構不穩定之ssDNA產生二級結構而發生核水解。EcSSB在與ssDNA結合的同時,會與許多特定的大腸桿菌單股去氧核糖核酸結合蛋白交互作用蛋白(SIP)在DNA代謝過程中協同合作。EcSSB之N端結構為核苷酸/寡糖結合結構(OBD),其C端結構與結構上定義明確的N端結構不同,為一段無法由結晶結構觀察到之固有無序鏈結分子。C端結構由固有無序鏈結分子(IDL)和九個氨基酸序列的模體(TIP)(MDFDDDIPF)組合而成。先前的研究提出在ssDNA存在的情況下、C端結構TIP與其它EcSSB或其它特定SIP共同參與關鍵之協同作用,C端結構IDL則形成特殊構型、提供 EcSSB蛋白本身保護而免於水解。為了進一步了解EcSSB蛋白內部與外部交互作用之機械性質,本研究使用微秒長度之全原子分子動態模擬進行EcSSB於無ssDNA結合與有 ssDNA結合、及高鹽類濃度與低鹽類濃度環境下之分子動態模擬。此外,分析方法如氫鍵計算、主成分分析(PCA)與機械性質分析用於計算、量化 EcSSB 內部與外部交互作用之結構與力學特性。最後本研究發現C端結構IDL中的極性非帶電性氨基酸(Ser、Gln和Asn)具有多變之內部與外部機械性質彈性。如此高彈性之內部與外部機械性質意味著,這些極性非帶電性氨基酸組合成之多個弱交互作用結合位是EcSSB自我保護或與其它蛋白結合ssDNA並協同作用之關鍵。此外,本研究觀察到EcSSB與ssDNA結合後,C端結構的結構彈性增加;而在低鹽濃度下,C端結構發生向外延展之結構機率也增加。
Escherichia coli single-stranded DNA binding protein (EcSSB) binds to the single-stranded DNA (ssDNA) with high affinity but no sequence specificity, preventing ssDNA from nucleolytic degradation while recruiting a group of specific EcSSB interacting proteins (SIPs) that cooperate in the DNA metabolic processes. In contrast to the well-defined N-terminal oligonucleotide/oligosaccharide-binding domain (OBD), the C-terminal domain containing intrinsically disordered linker (IDL) and a nine amino acid motif (TIP) (MDFDDDIPF) can not be observed in any crystal structure. Previous studies suggest that the C-terminal domain plays crucial roles in cooperating with other EcSSB subunits or other specific SIPs, and the structural properties of IDL afford proteolysis protection especially in the presence of ssDNA. To understand the mechanism by which EcSSB cooperates with EcSSB or specific SIPs, μs-timescale all-atom MD simulations of apo EcSSB and ssDNA bound EcSSB are performed. Furthermore, a fluctuation-matching scheme are used to quantify the interactions between residues in EcSSB. The polar residues (Ser, Gln, and Asn) in IDL are found to have heterogeneous coupling strengths in intra-domain interactions and in inter-domain interactions. Such diverse interactions imply that such residues are key for the ability of IDL in interacting with multiple targets. Furthermore, the flexibility of C-terminal domain is observed to increase in the presence of ssDNA, and lower C-terminal domain flexibility is also seen at the low salt concentration.
摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures v
List of Tables vi
1 Introduction 1
2 Computational Methods 6
2.1 Sampling the missing configurations of IDL 7
2.2 Development of all-atom models of EcSSB 8
2.3 All-atom molecular dynamics simulation of EcSSB 9
2.4 Characterization of structural properties 9
2.5 Computation of inter-atomic coupling strengths 10
3 Results and Discussion 12
3.1 The structures of IDL and TIP sampled by exploratory MD simulations 13
3.2 All-atom MD simulations of EcSSB tetramer reveal the binding modes with ssDNA and their dependence on salt concentration 15
3.3 All-atom MD simulations reveal key molecular interactions for proteolysis protection by EcSSB C-terminal 19
3.4 IDL exhibits heterogeneous couplings to OBD 20
4 Conclusion 23
5 Figures and Tables 24
5.1 Figures 24
5.2 Tables 46
References 49
[1]  Sigal, N.; Delius, H.; Kornberg, T.; Gefter, M. L.; Alberts, B. A DNA-unwinding protein isolated from Escherichia coli: its Interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci. 1972, 69, 3537–3541.
[2]  Sancar, A.; Williams, K. R.; Chase, J. W.; Rupp, W. D. Sequences of the ssb gene and protein. Proc. Natl. Acad. Sci. 1981, 78, 4274–4278.
[3]  Griffith, J. D.; Harris, L. D.; Register, J. Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA Filaments. Cold Spring Harbor Symp. Quant. Biol. 1984, 49, 553–559.
[4]  Chase, J. W.; Williams, K. R. Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 1986,
[5]  Bujalowski, W.; Lohman, T. M. Escherichia coli single-strand binding protein forms mul- tiple, distinct complexes with single-stranded DNA. Biochemistry 1986, 25, 7799–7802.
[6]  Lohman,T.M.; Ferrari, M. E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 1994, 63, 527–570, PMID: 7979247.
[7]  Shereda, R. D.; Kozlov, A. G.; Lohman, T. M.; Cox, M. M.; Keck, J. L. SSB as an orga- nizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 289–318.
[8]  Pestryakov, P. E.; Lavrik, O. I. Mechanisms of single-stranded DNA-binding protein funtioning in cellular DNA metabolism. Biochemistry (Moscow) 2008, 73, 1388–1404.
[9]  Antony, E.; Lohman, T. M. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin. Cell Dev. Biol. 2019, 86, 102–111.
[10]  Theobald, D. L.; Mitton-Fry, R. M.; Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 115–133. 

[11] Flynn, R. L.; Zou, L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 266–275.
[12] Lu, D.; Keck, J. L. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc. Natl. Acad. Sci. 2008, 105, 9169–9174.
[13] Bianco, P. R. The tale of SSB. Prog. Biophys. Mol. Biol. 2017, 127, 111 – 118.
[14] Matsumoto, T.; Morimoto, Y.; Shibata, N.; Kinebuchi, T.; Shimamoto, N.; Tsukihara, T.; Yasuoka, N. Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-Ray structure analysis. J. Biochem. 2000, 127, 329– 335.
[15] Shishmarev, D.; Wang, Y.; Mason, C. E.; Su, X.-C.; Oakley, A. J.; Graham, B.; Huber, T.; Dixon, N. E.; Otting, G. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy. Nucleic Acids Res. 2014, 42, 2750–2757.
[16] Kinebuchi, T.; Shindo, H.; Nagai, H.; Shimamoto, N.; Shimizu, M. Functional Domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 1997, 36, 6732–6738.
[17] Kozlov, A. G.; Weiland, E.; Mittal, A.; Waldman, V.; Antony, E.; Fazio, N.; Pappu, R. V.; Lohman, T. M. Intrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA. J. Mol. Biol. 2015, 427, 763–774.
[18] Casas-Finet, J. R.; Khamis, M. I.; Maki, A. H.; Chase, J. W. Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single stranded polynucleotides. FEBS Lett. 1987, 220, 347–352.
[19] Khamis, M. I.; Casas-Finet, J. R.; Maki, A. H.; Murphy, J. B.; Chase, J. W. Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. J. Biol. Chem. 1987, 262, 10938–10945.
[20] Ferrari, M. E.; Fang, J.; Lohman, T. M. A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single- stranded DNA binding. Biophys. Chem. 1997, 64, 235 – 251, 10 Years of the Gibbs Conference on Biothermodynamics.
[21] Raghunathan, S.; Ricard, C. S.; Lohman, T. M.; Waksman, G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution. Proc. Natl. Acad. Sci. 1997, 94, 6652–6657.
[22] Raghunathan, S.; Kozlov, A. G.; Lohman, T. M.; Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 2000, 7, 648–652.
[23] Lohman,T.M.; Overman, L. B. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 1985, 260, 3594–3603.
[24] Lohman, T. M.; Overman, L. B.; Datta, S. Salt-dependent changes in the DNA binding cooperativity of Escherichia coli single strand binding protein. J. Mol. Biol. 1986, 187, 603–615.
[25] Bujalowski, W.; Overman, L. B.; Lohman, T. M. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 1988, 263, 4629–4640.
[26] Lohman, T. M.; Bujalowski, W. Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes. Biochemistry 1988, 27, 2260–2265, PMID: 3289611.
[27] Kozlov, A. G.; Lohman, T. M. Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA. Biochemistry 2006, 45, 5190–5205.
[28] Kozlov, A. G.; Shinn, M. K.; Lohman, T. M. Regulation of nearest-neighbor cooperative binding of E. coli SSB protein to DNA. Biophys. J. 2019, 117, 2120–2140.
[29] Bianco, P. R.; Pottinger, S.; Tan, H. Y.; Nguyenduc, T.; Rex, K.; Varshney, U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein–protein interactions. Protein Sci. 2017, 26, 227–241.
[30] Marceau, A. H.; Bahng, S.; Massoni, S. C.; George, N. P.; Sandler, S. J.; Marians, K. J.; Keck, J. L. Structure of the SSB–DNA polymerase III interface and its role in DNA replication. EMBO J. 2011, 30, 4236–4247.
[31] Curth, U.; Genschel, J.; Urbanke, C.; Greipel, J. In Vitro and in Vivo Function of the C- Terminus of Escherichia Coli Single-Stranded DNA Binding Protein . Nucleic Acids Res. 1996, 24, 2706–2711.
[32] Buss, J. A.; Kimura, Y.; Bianco, P. R. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 2008, 36, 7029–7042.
[33] Shereda, R. D.; Reiter, N. J.; Butcher, S. E.; Keck, J. L. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J. Mol. Biol. 2009, 386, 612 – 625.
[34] Su,X.C.;Wang,Y.; Yagi,H.; Shishmarev, D.; Mason, C. E.; Smith, P. J.; Vandevenne, M.; Dixon, N. E.; Otting, G. Bound or free: Interaction of the C-terminal domain of escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 2014, 53, 1925–1934.
[35] Bhattacharyya, B.; George, N. P.; Thurmes, T. M.; Zhou, R.; Jani, N.; Wessel, S. R.; San- dler, S. J.; Ha, T.; Keck, J. L. Structural mechanisms of PriA-mediated DNA replication restart. Proc. Natl. Acad. Sci. 2014, 111, 1373–1378.
[36] Yu, C.; Tan, H. Y.; Choi, M.; Stanenas, A. J.; Byrd, A. K.; Raney, K. D.; Cohan, C. S.; Bianco, P. R. SSB binds to the RecG and PriA helicases in vivo in the absence of DNA. Genes Cells 2016, 21, 163–184.
[37] Radivojac, P.; Iakoucheva, L. M.; Oldfield, C. J.; Obradovic, Z.; Uversky, V. N.; Dunker, A. K. Intrinsic disorder and functional proteomics. Biophys. J. 2007, 92, 1439– 1456.
[38] Vacic, V.; Uversky, V. N.; Dunker, A. K.; Lonardi, S. Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinf. 2007, 8, 211.
[39] Campen, A.; Williams, R.; Brown, C.; Meng, J.; Uversky, V.; Dunker, A. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 2008, 15, 956–963.
[40] Uversky,V.N.; Dunker,A.K.Understanding protein non-folding. Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804, 1231–1264.
[41] Uversky, V. N. Intrinsically disordered proteins and their ”mysterious” (Meta)physics. Front. Phys. 2019, 7.
[42] Matsushima, N.; Yoshida, H.; Kumaki, Y.; Kamiya, M.; Tanaka, T.; Izumi, Y.; Kretsinger, R. Flexible structures and ligand interactions of tandem repeats consisting of proline, glycine, asparagine, serine, and/or threonine rich oligopeptides in proteins. Curr. Protein Pept. Sci. 2008, 9, 591–610.
[43] Brown, A. M.; Zondlo, N. J. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline–aromatic interactions. Biochemistry 2012, 51, 5041–5051, PMID: 22667692.
[44] Tan, H. Y.; Wilczek, L. A.;Pottinger, S.; Manosas, M.; Yu, C.; Nguyenduc, T.; Bianco, P. R. The intrinsically disordered linker of E. coli SSB is critical for the release from single- stranded DNA. Protein Sci. 2017, 26, 700–717.
[45] Tirion, M. M. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 1996, 77, 1905–1908.
[46] Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim,J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, NA–NA.
[47] Hart, K.; Foloppe, N.; Baker, C. M.; Denning, E. J.; Nilsson, L.; MacKerell, A. D. Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2011, 8, 348–362.
[48] III, W. E. R. Theoretical Studies of Hydrogen Bonding. Ph.D. thesis, Department of Chemistry, Harvard University, 1985.
[49] Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921.
[50] Haberthür, U.; Caflisch, A. FACTS: fast analytical continuum treatment of solvation. J. Comput. Chem. 2008, 29, 701–715.
[51] Srinivasan, J.; Trevathan, M. W.; Beroza, P.; Case, D. A. Application of a pairwise gen- eralized Born model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Acc. 1999, 101, 426–434.
[52] Richard J. Gowers,; MaxLinke,; JonathanBarnoud,; Tyler J. E. Reddy,; Manuel N. Melo,; Sean L. Seyler,; Jan Domański,; David L. Dotson,; Sébastien Buchoux,; Ian M. Kenney,; Oliver Beckstein, MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proc. 15th Python in Science Conf. 2016; pp 98–105.
[53] Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327.
[54] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. J.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25.
[55] Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.
[56] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472.
[57] Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.
[58] Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33, 3628–3631.
[59] Berendsen, H. J. C.; Postma, J. P. M.; vanGunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.
[60] Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.
[61] Nguyen, H.; Case, D. A.; Rose, A. S. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics 2017, 34, 1241–1242.
[62] Schrödinger, LLC, The PyMOL Molecular Graphics System, Version 2.0. Schrödinger, LLC 2015
[63] Brooks, B. R.; Janežič, D.; Karplus, M. Harmonic analysis of large systems. I. Methodology. J. Comput. Chem. 1995, 16, 1522–1542.
[64] Chu, J.-W.; Voth, G. A. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 2006, 90, 1572–1582.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top