|
[1] Sigal, N.; Delius, H.; Kornberg, T.; Gefter, M. L.; Alberts, B. A DNA-unwinding protein isolated from Escherichia coli: its Interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci. 1972, 69, 3537–3541. [2] Sancar, A.; Williams, K. R.; Chase, J. W.; Rupp, W. D. Sequences of the ssb gene and protein. Proc. Natl. Acad. Sci. 1981, 78, 4274–4278. [3] Griffith, J. D.; Harris, L. D.; Register, J. Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA Filaments. Cold Spring Harbor Symp. Quant. Biol. 1984, 49, 553–559. [4] Chase, J. W.; Williams, K. R. Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 1986, [5] Bujalowski, W.; Lohman, T. M. Escherichia coli single-strand binding protein forms mul- tiple, distinct complexes with single-stranded DNA. Biochemistry 1986, 25, 7799–7802. [6] Lohman,T.M.; Ferrari, M. E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 1994, 63, 527–570, PMID: 7979247. [7] Shereda, R. D.; Kozlov, A. G.; Lohman, T. M.; Cox, M. M.; Keck, J. L. SSB as an orga- nizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 289–318. [8] Pestryakov, P. E.; Lavrik, O. I. Mechanisms of single-stranded DNA-binding protein funtioning in cellular DNA metabolism. Biochemistry (Moscow) 2008, 73, 1388–1404. [9] Antony, E.; Lohman, T. M. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin. Cell Dev. Biol. 2019, 86, 102–111. [10] Theobald, D. L.; Mitton-Fry, R. M.; Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 115–133.
[11] Flynn, R. L.; Zou, L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 266–275. [12] Lu, D.; Keck, J. L. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc. Natl. Acad. Sci. 2008, 105, 9169–9174. [13] Bianco, P. R. The tale of SSB. Prog. Biophys. Mol. Biol. 2017, 127, 111 – 118. [14] Matsumoto, T.; Morimoto, Y.; Shibata, N.; Kinebuchi, T.; Shimamoto, N.; Tsukihara, T.; Yasuoka, N. Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-Ray structure analysis. J. Biochem. 2000, 127, 329– 335. [15] Shishmarev, D.; Wang, Y.; Mason, C. E.; Su, X.-C.; Oakley, A. J.; Graham, B.; Huber, T.; Dixon, N. E.; Otting, G. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy. Nucleic Acids Res. 2014, 42, 2750–2757. [16] Kinebuchi, T.; Shindo, H.; Nagai, H.; Shimamoto, N.; Shimizu, M. Functional Domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 1997, 36, 6732–6738. [17] Kozlov, A. G.; Weiland, E.; Mittal, A.; Waldman, V.; Antony, E.; Fazio, N.; Pappu, R. V.; Lohman, T. M. Intrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA. J. Mol. Biol. 2015, 427, 763–774. [18] Casas-Finet, J. R.; Khamis, M. I.; Maki, A. H.; Chase, J. W. Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single stranded polynucleotides. FEBS Lett. 1987, 220, 347–352. [19] Khamis, M. I.; Casas-Finet, J. R.; Maki, A. H.; Murphy, J. B.; Chase, J. W. Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. J. Biol. Chem. 1987, 262, 10938–10945. [20] Ferrari, M. E.; Fang, J.; Lohman, T. M. A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single- stranded DNA binding. Biophys. Chem. 1997, 64, 235 – 251, 10 Years of the Gibbs Conference on Biothermodynamics. [21] Raghunathan, S.; Ricard, C. S.; Lohman, T. M.; Waksman, G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution. Proc. Natl. Acad. Sci. 1997, 94, 6652–6657. [22] Raghunathan, S.; Kozlov, A. G.; Lohman, T. M.; Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 2000, 7, 648–652. [23] Lohman,T.M.; Overman, L. B. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 1985, 260, 3594–3603. [24] Lohman, T. M.; Overman, L. B.; Datta, S. Salt-dependent changes in the DNA binding cooperativity of Escherichia coli single strand binding protein. J. Mol. Biol. 1986, 187, 603–615. [25] Bujalowski, W.; Overman, L. B.; Lohman, T. M. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 1988, 263, 4629–4640. [26] Lohman, T. M.; Bujalowski, W. Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes. Biochemistry 1988, 27, 2260–2265, PMID: 3289611. [27] Kozlov, A. G.; Lohman, T. M. Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA. Biochemistry 2006, 45, 5190–5205. [28] Kozlov, A. G.; Shinn, M. K.; Lohman, T. M. Regulation of nearest-neighbor cooperative binding of E. coli SSB protein to DNA. Biophys. J. 2019, 117, 2120–2140. [29] Bianco, P. R.; Pottinger, S.; Tan, H. Y.; Nguyenduc, T.; Rex, K.; Varshney, U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein–protein interactions. Protein Sci. 2017, 26, 227–241. [30] Marceau, A. H.; Bahng, S.; Massoni, S. C.; George, N. P.; Sandler, S. J.; Marians, K. J.; Keck, J. L. Structure of the SSB–DNA polymerase III interface and its role in DNA replication. EMBO J. 2011, 30, 4236–4247. [31] Curth, U.; Genschel, J.; Urbanke, C.; Greipel, J. In Vitro and in Vivo Function of the C- Terminus of Escherichia Coli Single-Stranded DNA Binding Protein . Nucleic Acids Res. 1996, 24, 2706–2711. [32] Buss, J. A.; Kimura, Y.; Bianco, P. R. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 2008, 36, 7029–7042. [33] Shereda, R. D.; Reiter, N. J.; Butcher, S. E.; Keck, J. L. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J. Mol. Biol. 2009, 386, 612 – 625. [34] Su,X.C.;Wang,Y.; Yagi,H.; Shishmarev, D.; Mason, C. E.; Smith, P. J.; Vandevenne, M.; Dixon, N. E.; Otting, G. Bound or free: Interaction of the C-terminal domain of escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 2014, 53, 1925–1934. [35] Bhattacharyya, B.; George, N. P.; Thurmes, T. M.; Zhou, R.; Jani, N.; Wessel, S. R.; San- dler, S. J.; Ha, T.; Keck, J. L. Structural mechanisms of PriA-mediated DNA replication restart. Proc. Natl. Acad. Sci. 2014, 111, 1373–1378. [36] Yu, C.; Tan, H. Y.; Choi, M.; Stanenas, A. J.; Byrd, A. K.; Raney, K. D.; Cohan, C. S.; Bianco, P. R. SSB binds to the RecG and PriA helicases in vivo in the absence of DNA. Genes Cells 2016, 21, 163–184. [37] Radivojac, P.; Iakoucheva, L. M.; Oldfield, C. J.; Obradovic, Z.; Uversky, V. N.; Dunker, A. K. Intrinsic disorder and functional proteomics. Biophys. J. 2007, 92, 1439– 1456. [38] Vacic, V.; Uversky, V. N.; Dunker, A. K.; Lonardi, S. Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinf. 2007, 8, 211. [39] Campen, A.; Williams, R.; Brown, C.; Meng, J.; Uversky, V.; Dunker, A. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 2008, 15, 956–963. [40] Uversky,V.N.; Dunker,A.K.Understanding protein non-folding. Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804, 1231–1264. [41] Uversky, V. N. Intrinsically disordered proteins and their ”mysterious” (Meta)physics. Front. Phys. 2019, 7. [42] Matsushima, N.; Yoshida, H.; Kumaki, Y.; Kamiya, M.; Tanaka, T.; Izumi, Y.; Kretsinger, R. Flexible structures and ligand interactions of tandem repeats consisting of proline, glycine, asparagine, serine, and/or threonine rich oligopeptides in proteins. Curr. Protein Pept. Sci. 2008, 9, 591–610. [43] Brown, A. M.; Zondlo, N. J. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline–aromatic interactions. Biochemistry 2012, 51, 5041–5051, PMID: 22667692. [44] Tan, H. Y.; Wilczek, L. A.;Pottinger, S.; Manosas, M.; Yu, C.; Nguyenduc, T.; Bianco, P. R. The intrinsically disordered linker of E. coli SSB is critical for the release from single- stranded DNA. Protein Sci. 2017, 26, 700–717. [45] Tirion, M. M. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 1996, 77, 1905–1908. [46] Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim,J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, NA–NA. [47] Hart, K.; Foloppe, N.; Baker, C. M.; Denning, E. J.; Nilsson, L.; MacKerell, A. D. Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2011, 8, 348–362. [48] III, W. E. R. Theoretical Studies of Hydrogen Bonding. Ph.D. thesis, Department of Chemistry, Harvard University, 1985. [49] Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. [50] Haberthür, U.; Caflisch, A. FACTS: fast analytical continuum treatment of solvation. J. Comput. Chem. 2008, 29, 701–715. [51] Srinivasan, J.; Trevathan, M. W.; Beroza, P.; Case, D. A. Application of a pairwise gen- eralized Born model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Acc. 1999, 101, 426–434. [52] Richard J. Gowers,; MaxLinke,; JonathanBarnoud,; Tyler J. E. Reddy,; Manuel N. Melo,; Sean L. Seyler,; Jan Domański,; David L. Dotson,; Sébastien Buchoux,; Ian M. Kenney,; Oliver Beckstein, MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proc. 15th Python in Science Conf. 2016; pp 98–105. [53] Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [54] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. J.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25. [55] Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [56] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [57] Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [58] Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33, 3628–3631. [59] Berendsen, H. J. C.; Postma, J. P. M.; vanGunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [60] Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [61] Nguyen, H.; Case, D. A.; Rose, A. S. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics 2017, 34, 1241–1242. [62] Schrödinger, LLC, The PyMOL Molecular Graphics System, Version 2.0. Schrödinger, LLC 2015 [63] Brooks, B. R.; Janežič, D.; Karplus, M. Harmonic analysis of large systems. I. Methodology. J. Comput. Chem. 1995, 16, 1522–1542. [64] Chu, J.-W.; Voth, G. A. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 2006, 90, 1572–1582.
|