|
[1] R. Agrawal, T. Imieliński, and A. Swami, Mining association rules between sets of items in large databases. ACM SIGMOD Record, 1993. 22(2): pp. 207-216. [2] R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, in Proceedings of the 20th International Conference on Very Large Data Bases. 1994, Morgan Kaufmann Publishers Inc. pp. 487-499. [3] N.S. Altman, An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 1992. 46(3): pp. 175-185. [4] L. Breiman, Bagging Predictors. Machine Learning, 1996. 24(2): pp. 123-140. [5] L. Breiman, Random Forests. Machine Learning, 2001. 45(1): pp. 5-32. [6] L. Breiman, et al., Classification and Regression Trees. 1984: Taylor & Francis. [7] T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System. 2016. [8] J. Davis and M. Goadrich, The Relationship Between Precision-Recall and ROC Curves. 2006, ACM Press. [9] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 1996. 39(11): pp. 27-34. [10] W.J. Frawley, G. Piatetsky-Shapiro, and C.J. Matheus, Knowledge discovery in databases: an overview. AI Magazine, 1992. 13(3): pp. 57. [11] J.H. Friedman, Greedy function approximation: A gradient boosting machine. Ann. Statist., 2001. 29(5): pp. 1189-1232. [12] G. Ke, et al., LightGBM: a highly efficient gradient boosting decision tree, in Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, Curran Associates Inc.: Long Beach, California, USA. pp. 3149-3157. [13] S.-L. Org. Scikit-Learn algorithm cheat-sheet. Available from: https://scikit-learn.org/stable/index.html. [14] D. Powers and Ailab, Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol, 2011. 2: pp. 2229-3981. [15] I. Rish, An empirical study of the naive Bayes classifier, in IJCAI 2001 workshop on empirical methods in artificial intelligence. 2001. pp. 41-46. [16] P.-N. Tan, Introduction to data mining, M. Steinbach and V. Kumar, Editors. 2006, Boston : Pearson Addison Wesley: Boston. [17] B. Thuraisingham, A primer for understanding and applying data mining. IT Professional, 2000. 2(1): pp. 28-31. [18] Wikipedia. Anaconda. Available from: https://zh.wikipedia.org/wiki/Anaconda_(Python发行版). [19] Wikipedia. Python. Available from: https://zh.wikipedia.org/wiki/Python. [20] Wikipedia. scikit-learn. Available from: https://en.wikipedia.org/wiki/Scikit-learn. [21] 丁世杰, 資料探勘技術在晶圓針測誤宰分析之應用, in 理學院應用科技學程. 2011, 國立交通大學. pp. 48. [22] 王忠宗, 採購管理實務, 空大, 2006. [23] 肖瀟, 賺錢公司的採購學, 大是文化, 2018. [24] 林大貴, Python+ Spark 2.0+Hadoop機器學習與大數據分析實戰, 博碩文化, 2016. [25] 林秋堂, 採購概論與實務 = An Introduction to Purchasing and Practice, 新文京, 2003. [26] 財經. 交期管理:如何確保供應商如期交貨?. [Internet] 2015; Available from: https://kknews.cc/finance/gqqmvpy.html. [27] 曾素真, 以資料探勘分析多樣少量訂貨生產採購流程時間之研究, in 工業與資訊管理學系專班. 2007, 國立成功大學: 台南市. pp. 67. [28] 黃錦江, 以ISO-9001精神建立交期管理系統之研究---微機電公司為例, in 管理學院工業工程與管理學程. 2006, 國立交通大學. pp. 129. [29] 嶋津司, 採購管理, 譯. 簡錦川, 書泉, 2001.
|