跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林芸萱
研究生(外文):Lin, Yun-Xuan
論文名稱:視野周圍模糊對虛擬實境暈眩的影響
論文名稱(外文):Effects of Peripheral Blur on Cybersickness in Immersive Virtual Environments
指導教授:林文杰林文杰引用關係
指導教授(外文):Lin, Wen-Chieh
口試委員:林文杰林奕成詹力韋柯立偉
口試委員(外文):Lin, Wen-ChiehLin, I-ChenChan, Li-WeiKo, Li-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:58
中文關鍵詞:虛擬實境
外文關鍵詞:Virtual RealityCybersickness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
虛擬實境暈眩(cybersickness)是推廣虛擬實境及其應用的挑戰之一。許多不同的研究虛擬實境暈眩是推廣虛擬實境及其應用的挑戰之一。在過去已經有許多了解與減少虛擬實境暈眩的相關研究。從過去利用模糊影像或減少視野範圍的方法中,我們提出了模糊影像的邊緣(非注視區域),以減少虛擬實境暈眩。在影像邊緣,我們利用高斯模糊來模擬注視點渲染技術(foveated rendering)的呈現影像。在本研究中,我們分別探討了模糊區域的大小與位置固定與否,是否會影響虛擬實境暈眩、在虛擬實境中的任務表現、以及沉浸感。我們的結果顯示,在影像邊緣施以固定位置的模糊效果,可以減低虛擬實境暈眩,並且任務表現和沉浸感並無受到顯著影響。根據實驗結果,我們認為固定的注視點渲染技術除原本減輕系統效能負擔的目的之外,也同時具有降低虛擬實境暈眩的效果。
Cybersickness is one of the challenges that has prevented the widespread adoption of Virtual Reality (VR) and its applications. Due to its importance, there have been extensive studies on understanding and reducing cybersickness. Inspired by previous work that has sought to reduce cybersickness by applying the blurring effect and reducing the field of view of VR scenes, we propose to exploit peripheral blur to reduce cybersickness.
We investigated the effect of peripheral blur on cybersickness, task performance, and presence with two separate studies, focusing on two different factors. Specifically, we focus on the effect of the size of blurred peripheral region in our first study, and the effect of the position of the blurred peripheral region in the second study. We applied a Gaussian blur effect in the peripheral region to simulate the foveated rendering visual effect.
The results revealed that peripheral blur with a fixed position can significantly reduce the growth of cybersickness. Additionally, the participants' task performance and levels of presence were not significantly influenced by the peripheral blur, suggesting that fixed foveated rendering could be a promising solution to reduce cybersickness without compromising users' VR experiences.
1 Introduction p1
2 Related Work p4
2.1 Cybersickness p4
2.2 Image-based Remedies to Cybersickness p5
2.3 Peripheral Blur and Foveated Rendering p6
3 Research Goal p8
4 System Description p9
4.1 Equipment p9
4.2 Virtual Environment p9
4.3 Peripheral Blur p10
5 Study 1: Size of the Central Window p12
5.1 Experimental Factor and Conditions p12
5.2 Participants p13
5.3 Tasks p14
5.3.1 Search Task p14
5.3.2 Spatial Updating Task p14
5.3.3 Maze Design and Predefined Traversal Path p15
5.4 Procedure p16
5.5 Measures p18
5.5.1 Cybersickness p18
5.5.2 Task Performance p18
5.5.3 Presence p19
5.5.4 Post-session/Post-experiment Questionnaires and Interviews p19
5.6 Results p20
5.6.1 Discomfort Score p20
5.6.2 Delta between Pre- and Post-SSQ Scores p26
5.6.3 Number of Early-Termination Participants p27
5.6.4 Task Performance and Presence p28
5.6.5 Post-session/Post-experiment Questionnaires and Interviews p29
5.6.6 Fairness of the Path Directions p31
6 Study 2: Dynamic Gaze-Based Position of the Central Window p32
6.1 Experimental Factor and Conditions p32
6.2 Participants p34
6.3 Tasks, Procedure, and Measures p34
6.4 Results p35
6.4.1 Discomfort Score p35
6.4.2 Delta between Pre- and Post-SSQ Scores p40
6.5 Number of Early-Termination Participants p40
6.5.1 Task Performance and Presence p41
6.5.2 Post-session/Post-experiment Questionnaires and Interviews p41
6.5.3 Fairness of the Mazes p43
7 Discussion p45
7.1 Cybersickness and Peripheral-Blur Image p45
7.2 Task Performance, Presence, and Peripheral-Blur Image p47
7.3 Detection of Peripheral Blur p47
7.4 Fairness of the Environment p48
7.5 Summary of Findings and Comparison with Related Works p48
8 Limitations and Future Work p50
9 Conclusion p52
A IRB Certification p58
[1] Paul DiZio and James R Lackner. “Circumventing side effects of immersive virtual
environments”. In: HCI (2). 1997, pp. 893–896.
[2] Randy Pausch, Thomas Crea, and Matthew Conway. “A literature survey for virtual
environments: Military flight simulator visual systems and simulator sickness”. In:
Presence: Teleoperators & Virtual Environments 1.3 (1992), pp. 344–363.
[3] Eugenia M Kolasinski. Simulator Sickness in Virtual Environments. Tech. rep. Army
research inst for the behavioral and social sciences Alexandria VA, 1995.
[4] Richard Yao et al. “Oculus VR best practices guide”. In: Oculus VR 4 (2014).
[5] Ajoy S Fernandes and Steven K Feiner. “Combating VR sickness through subtle
dynamic field-of-view modification”. In: 3D User Interfaces (3DUI), 2016 IEEE
Symposium on. IEEE. 2016, pp. 201–210.
[6] Nahal Norouzi, Gerd Bruder, and Greg Welch. “Assessing Vignetting as a Means
to Reduce VR Sickness During Amplified Head Rotations”. In: (2018).
[7] Yasin Y Farmani and Robert John R Teather. “Viewpoint snapping to reduce cybersickness in virtual reality”. In: (2018).
[8] Tim Weiβker et al. “Spatial updating and simulator sickness during steering and
jumping in immersive virtual environments”. In: 2018 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR). IEEE. 2018, pp. 97–104.
[9] Kasra Rahimi Moghadam, Colin Banigan, and Eric D Ragan. “Scene Transitions
and Teleportation in Virtual Reality and the Implications for Spatial Awareness and
Sickness”. In: IEEE transactions on visualization and computer graphics (2018).
[10] Pulkit Budhiraja et al. “Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality First Person Shooters”. In: arXiv preprint arXiv:1710.02599
(2017).
[11] Guang-Yu Nie et al. “Analysis on Mitigation of Visually Induced Motion Sickness
by Applying Dynamical Blurring on a User’s Retina”. In: IEEE transactions on
visualization and computer graphics (2019).
[12] Guangyu Nie et al. “Real-time salient object detection based on fully convolutional
networks”. In: Chinese Conference on Image and Graphics Technologies. Springer.
2017, pp. 189–198.
[13] Kieran Carnegie and Taehyun Rhee. “Reducing visual discomfort with HMDs using
dynamic depth of field”. In: IEEE computer graphics and applications 35.5 (2015),
pp. 34–41.
[14] Yu Fang et al. “Eye-head coordination for visual cognitive processing”. In: PloS one
10.3 (2015), e0121035.
[15] Chih-Fan Hsu et al. “Is foveated rendering perceivable in virtual reality?: exploring
the efficiency and consistency of quality assessment methods”. In: Proceedings of
the 2017 ACM on Multimedia Conference. ACM. 2017, pp. 55–63.
[16] Anjul Patney et al. “Towards foveated rendering for gaze-tracked virtual reality”.
In: ACM Transactions on Graphics (TOG) 35.6 (2016), p. 179.
[17] XIAOXU MENG et al. “Kernel Foveated Rendering”. In: (2018).
[18] Oculus Go: Fixed Foveated Rendering. https://developer.oculus.com/documentation/
unreal/latest/concepts/unreal-ffr/. 2018.
[19] B Keshavarz, H Hecht, and BD Lawson. “Visually induced motion sickness: characteristics, causes, and countermeasures”. In: Handbook of virtual environments:
Design, implementation, and applications (2014), pp. 648–697.
[20] Sarah Sharples et al. “Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems”.
In: Displays 29.2 (2008), pp. 58–69.
[21] Kay M Stanney, Robert S Kennedy, and Julie M Drexler. “Cybersickness is not
simulator sickness”. In: Proceedings of the Human Factors and Ergonomics Society
annual meeting. Vol. 41. 2. SAGE Publications Sage CA: Los Angeles, CA. 1997,
pp. 1138–1142.
[22] Emilee Patrick et al. “Using a large projection screen as an alternative to headmounted displays for virtual environments”. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems. ACM. 2000, pp. 478–485.
[23] Behrang Keshavarz et al. “Vection and visually induced motion sickness: how are
they related?” In: Frontiers in psychology 6 (2015), p. 472.
[24] Joseph J LaViola Jr. “A discussion of cybersickness in virtual environments”. In:
ACM Sigchi Bulletin 32.1 (2000), pp. 47–56.
[25] Tae Min Lee, Jong-Chul Yoon, and In-Kwon Lee. “Motion Sickness Prediction in
Stereoscopic Videos using 3D Convolutional Neural Networks”. In: IEEE transactions on visualization and computer graphics 25.5 (2019), pp. 1919–1927.
[26] Nitish Padmanaban et al. “Towards a machine-learning approach for sickness prediction in 360 stereoscopic videos”. In: IEEE transactions on visualization and computer graphics 24.4 (2018), pp. 1594–1603.
[27] Robert Konrad et al. “Accommodation-invariant computational near-eye displays”.
In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 88.
[28] Jan-Philipp Stauffert, Florian Niebling, and Marc Erich Latoschik. “Effects of latency jitter on simulator sickness in a search task”. In: 2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). IEEE. 2018, pp. 121–127.
[29] Shi-Hong Liu et al. “PhantomLegs: Reducing Virtual Reality Sickness Using HeadWorn Haptic Devices”. In: 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE. 2019, pp. 817–826.
[30] Naoki Kimura and Jun Rekimoto. “ExtVision: Augmentation of Visual Experiences
with Generation of Context Images for a Peripheral Vision Using Deep Neural Network”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM. 2018, p. 427.
31] JJ-W Lin et al. “Effects of field of view on presence, enjoyment, memory, and
simulator sickness in a virtual environment”. In: Virtual Reality, 2002. Proceedings.
IEEE. IEEE. 2002, pp. 164–171.
[32] Zekun Cao, Jason Jerald, and Regis Kopper. “Visually-induced motion sickness
reduction via static and dynamic rest frames”. In: 2018 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR). IEEE. 2018, pp. 105–112.
[33] Tobias Blum et al. “The effect of out-of-focus blur on visual discomfort when using
stereo displays”. In: 2010 IEEE International Symposium on Mixed and Augmented
Reality. IEEE. 2010, pp. 13–17.
[34] Martin Weier et al. “Foveated Real-Time Ray Tracing for Head-Mounted Displays”.
In: Computer Graphics Forum. Vol. 35. 7. Wiley Online Library. 2016, pp. 289–298.
[35] Nicholas T Swafford et al. “User, metric, and computational evaluation of foveated
rendering methods”. In: Proceedings of the ACM Symposium on Applied Perception.
ACM. 2016, pp. 7–14.
[36] George Alex Koulieris et al. “Gaze prediction using machine learning for dynamic
stereo manipulation in games”. In: 2016 IEEE Virtual Reality (VR). IEEE. 2016,
pp. 113–120.
[37] Kenan Bektaş et al. “GeoGCD: improved visual search via gaze-contingent display”.
In: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. ACM. 2019, p. 84.
[38] Rachel Albert et al. “Latency requirements for foveated rendering in virtual reality”.
In: ACM Transactions on Applied Perception (TAP) 14.4 (2017), p. 25.
[39] John F Golding. “Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness”. In: Brain research bulletin 47.5 (1998), pp. 507–
516.
[40] Robert S Kennedy et al. “Simulator sickness questionnaire: An enhanced method for
quantifying simulator sickness”. In: The international journal of aviation psychology
3.3 (1993), pp. 203–220.
[41] Igroup. Igroup Presence Questionnaire (IPQ). http://www.igroup.org/pq/ipq/.
2018.
[42] Keith Nesbitt et al. “Correlating reaction time and nausea measures with traditional
measures of cybersickness”. In: Displays 48 (2017), pp. 1–8.
[43] MT Turvey et al. “Role of the inertia tensor in perceiving object orientation by
dynamic touch.” In: Journal of Experimental Psychology: Human Perception and
Performance 18.3 (1992), p. 714.
[44] Christina J Howard and Alex O Holcombe. “Unexpected changes in direction of
motion attract attention”. In: Attention, Perception, & Psychophysics 72.8 (2010),
pp. 2087–2095.
[45] James T Enns et al. “New objects dominate luminance transients in setting attentional priority.” In: Journal of Experimental Psychology: Human Perception and
Performance 27.6 (2001), p. 1287.
[46] Adrian von Mühlenen, Mark I Rempel, and James T Enns. “Unique temporal change
is the key to attentional capture”. In: Psychological Science 16.12 (2005), pp. 979–
986.
[47] Elena Arabadzhiyska et al. “Saccade landing position prediction for gaze-contingent
rendering”. In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 50.
[48] Mark S Dennison, A Zachary Wisti, and Michael D’Zmura. “Use of physiological
signals to predict cybersickness”. In: Displays 44 (2016), pp. 42–52.
[49] Antje Nuthmann and George L Malcolm. “Eye guidance during real-world scene
search: The role color plays in central and peripheral vision”. In: Journal of Vision
16.2 (2016), pp. 3–3.
電子全文 電子全文(網際網路公開日期:20241116)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top