跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊志新
研究生(外文):Yang, Chih-Hsin
論文名稱:基於人體解析圖之人物圖像修復研究
論文名稱(外文):Human-aware Image Inpainting with Parsing Map
指導教授:林奕成林奕成引用關係
指導教授(外文):Lin, I-Chen
口試委員:朱宏國林彥宇胡敏君
口試委員(外文):Chu, Hung-KuoLin, Yen-YuHu, Min-Chun
口試日期:2019-10-9
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:24
中文關鍵詞:圖像修復人像合成混和通道卷積網路人體解析圖
外文關鍵詞:image inpaintinghuman synthesishybrid gated convolutionparsing map
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1 Introduction 1
2 Related Work 4
2.1 Image Inpainting 4
2.2 Human Pose Estimation and Parsing Map 5
2.3 Human Synthesis 5
3 Method 6
3.1 Network Architecture 6
3.2 Parsing Map Generator 8
3.3 Hybrid Gated Convolution 9
3.4 Inpainting Network 11
3.5 Refinement Network 13
4 Experiment 14
4.1 Training Strategy 14
4.1.1 Training Data 14
4.1.2 Training Process 14
4.2 Results 15
4.2.1 Ablation Study 15
4.2.2 Imperfect Parsing Map 15
4.2.3 Object Removal 16
4.2.4 Corrupted Image 17
4.2.5 Human Reconstruction 17
5 Conclusion 19
[1] Deepak Pathak et al. “Context encoders: Feature learning by inpainting”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 2536–2544.
[2] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. “Globally and locally consistent image completion”. In: ACM Transactions on Graphics (ToG) 36.4 (2017), p. 107.
[3] Chao Yang et al. “High-resolution image inpainting using multi-scale neural patch synthesis”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 6721–6729.
[4] Jiahui Yu et al. “Generative image inpainting with contextual attention”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 5505–5514.
[5] Guilin Liu et al. “Image Inpainting for Irregular Holes Using Partial Convolutions”. In: The European Conference on Computer Vision (ECCV). 2018.
[6] Jiahui Yu et al. “Free-form image inpainting with gated convolution”. In: arXiv preprint arXiv:1806.03589 (2018).
[7] Coloma Ballester et al. “Filling-in by joint interpolation of vector fields and gray levels”. In: (2000).
[8] Marcelo Bertalmio et al. “Image inpainting”. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. 2000, pp. 417–424.
[9] Alexei A Efros and William T Freeman. “Image quilting for texture synthesis and transfer”. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM. 2001, pp. 341–346.
[10] Alexei A Efros and Thomas K Leung. “Texture synthesis by non-parametric sampling”. In: Proceedings of the seventh IEEE international conference on computer vision. Vol. 2. IEEE. 1999, pp. 1033–1038.
[11] Vivek Kwatra et al. “Texture optimization for example-based synthesis”. In: ACM Transactions on Graphics (ToG). Vol. 24. 3. ACM. 2005, pp. 795–802.
[12] Denis Simakov et al. “Summarizing visual data using bidirectional similarity”. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2008, pp. 1–8.
[13] Connelly Barnes et al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. In: ACM Transactions on Graphics (ToG). Vol. 28. 3. ACM. 2009, p. 24.
[14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014, pp. 2672–2680.
[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomedical image segmentation”. In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.
[16] Alexander Toshev and Christian Szegedy. “Deeppose: Human pose estimation via deep neural networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, pp. 1653–1660.
[17] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human pose estimation”. In: European conference on computer vision. Springer. 2016, pp. 483–499.
[18] Shih-En Wei et al. “Convolutional pose machines”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 4724–4732.
[19] Wei Yang et al. “Learning feature pyramids for human pose estimation”. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 1281–1290.
[20] Yu Chen et al. “Adversarial posenet: A structure-aware convolutional network for human pose estimation”. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 1212–1221.
[21] Chia-Jung Chou, Jui-Ting Chien, and Hwann-Tzong Chen. “Self adversarial training for human pose estimation”. In: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE. 2018, pp. 17–30.
[22] Xiaodan Liang et al. “Human parsing with contextualized convolutional neural network”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1386–1394.
[23] Si Liu et al. “Matching-cnn meets knn: Quasi-parametric human parsing”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1419–1427.
[24] Xuecheng Nie et al. “Human pose estimation with parsing induced learner”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 2100–2108.
[25] Bo Zhao et al. “Multi-view image generation from a single-view”. In: 2018 ACM Multimedia Conference on Multimedia Conference. ACM. 2018, pp. 383–391.
[26] Liqian Ma et al. “Pose guided person image generation”. In: Advances in Neural Information Processing Systems. 2017, pp. 406–416.
[27] Albert Pumarola et al. “Unsupervised person image synthesis in arbitrary poses”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 8620–8628.
[28] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In: Proceedings of the IEEE international conference on computer vision. 2017, pp. 2223–2232.
[29] Guha Balakrishnan et al. “Synthesizing images of humans in unseen poses”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 8340–8348.
[30] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).
[31] Ke Gong et al. “Look into person: Self-supervised structure-sensitive learning and a new benchmark for human parsing”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 932–940.
[32] Bolei Zhou et al. “Places: A 10 million image database for scene recognition”. In: IEEE transactions on pattern analysis and machine intelligence 40.6 (2017), pp. 1452–1464.
[33] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint arXiv:1412.6980 (2014).
[34] Kamyar Nazeri et al. “Edgeconnect: Generative image inpainting with adversarial edge learning”. In: arXiv preprint arXiv:1901.00212 (2019).
電子全文 電子全文(網際網路公開日期:20241117)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top