[1] K. S. Novoselov, et al. “Electric Field Effect in Atomically Thin Carbon Films,” Science Vol. 306, 666-669 (2004).
[2] K. I. Bolotin, et al. “Ultrahigh electron mobility in suspended graphene,” Solid State Communications Vol. 146, 351-335 (2008).
[3] A. A. Balandin, et al. “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett, Vol. 8, 902-907 (2008).
[4] Zuoli He, Wenxiu Que, “Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction”, Applied Materials Today, Vol. 3, 23-56 (2016).
[5] Subhamoy Ghatak, Atindra Nath Pal, and Arindam Ghosh, “Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors” ACS Nano, 7707-7712 (2011).
[6] Q. H. Wang, et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides” Nature Nanotechnology, Vol.7, 699-712 (2012).
[7] Hai Li, et al. “Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy”, ACS Nano, 10344–10353 (2013).
[8] Deep Jariwala, et al. “Band-like transport in high mobility unencapsulated single-layer MoS2 transistors” Appl. Phys. Lett, Vol.102, 173107 (2013).
[9] B. Radisavljevic, A.Kis “Mobility Engineering and A Metal–Insulator Transition in Monolayer MoS2” Nature Materials, Vol.12, 815-820 (2013).
[10] C.P Lu, et al. “Bandgap and doping effects in MoS2 measured by Scanning Tunneling Microscopy and Spectroscopy” Nano Lett, 4628 (2014).
[11] Hyeokshin Kwon, et al. “Characterization of Edge Contact: Atomically Resolved Semiconductor–Metal Lateral Boundary in MoS2” Adv. Mater, Vol.29, 1702931 (2017).
[12] Anna V. Krivosheeva, et al. “Theoretical Study of defect impact on two-dimensional MoS2”, Journal of Semiconductors, Vol. 36 (2015).
[13] Santosh KC, et al. “Surface oxidation energetics and kinetics on MoS2 monolayer”, Journal of Applied Physics 117, 135301 (2015).
[14] 謝秉軒,「利用掃描探針顯微鏡分析二硫化鉬氧化前後之表面形貌與電性結構」,國立交通大學電子物理研究所,碩士論文,民國105年.[15] Sheng-Tsung Wang, and Wen-Bin Jian, et al. “Direct probing of density of states of reduced graphene oxides in a wide voltage range by tunneling junction”, Appl. Phys. Lett. Vol.101, 183110 (2012).
[16] D.A.Neamen, “Semiconductor physics and devices: basic principles,” (2012).
[17] S.M.Sze, “Semiconductor devices: physics and technology,” (2008).
[18] P.M Chaikin, T.C Lubensky, T.A Witten, “Principles of condensed matter physics,” (1995).
[19] P.A.Lee and T.V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys. Vol.57,287-337 (1985).
[20] P.W.Anderson, “Absence of Diffusion in Certain Random Lattices ,” Phys. Rev. Vol.109,1492 (1958)
[21] Tal Schwartz, et al. “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature, Vol.446,52-55 (2007)
[22] Stephen Gasiorowicz, “Quantum physics” 10. rev. (2007)
[23] C. Julian Chen, “Introduction to Scanning Tunneling Microscopy” (2008).
[24] A Zabet-Khosousi, A.A Dhirani, “Charge Transport in Nanoparticle Assemblies”, Chem. Rev. Vol.108, 4084-4124, (2008).