跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭博元
研究生(外文):Hsiao, Po-Yuan
論文名稱:應用貝氏網路預測航班延誤擴散
論文名稱(外文):Using Bayesian Network to Predict Flight Delay Propagation
指導教授:鍾易詩鍾易詩引用關係
指導教授(外文):Chung, Yi-Shih
口試委員:賈凱傑葉文健
口試委員(外文):Chia, Kai-ChiehYeh, Wen-Chien
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立交通大學
系所名稱:管理學院運輸物流學程
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:延誤擴散貝氏網路延誤預測交叉驗證
外文關鍵詞:Delay PropagationBayesian NetworkDelay PredictionCross-Validation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
航班延誤、取消、非正常異動等是困擾航空公司及旅客的一大難題,因航班班表規劃,當同一架飛機一天中執行連續航班任務時,若發生到達延誤和周轉時間的延長將直接影響下一航班的計劃起飛時間,如該航班的延誤擴散至下游航班,會進而導致更多的計劃航班延誤。本研究採用某亞洲航空公司2015年度以桃園機場為基地之航班運行狀態之歷史數據,篩選航班營運數最高的10個機場構建航機路線,並分析航班延誤之各類因素,結合專家知識透過貝氏網路模型進行建模,來預測航班延誤擴散之機率。研究結論發現,來機晚到為航班延誤擴散判別之關鍵性延誤因素,貝氏網路確實能建立相關預測模式,藉由交叉驗證方法可實證模型之有效性並校估改善模型。本研究之成果可供未來航空公司掌握航班延誤擴散之模型架構預測機率作為決策參考指標,用以提升航班準時率及班表穩健度。
Flight delays, cancellations, irregular operations, etc. are a major problem that plagues airlines and passengers. Due to flight schedule planning, when the same aircraft performs continuous flight tasks throughout the day, arrival delay and extended turnaround time will directly affect the scheduled departure time of the next flight, if the delay of that flight propagates to downstream flights, will in turn cause more scheduled flight delays. This research uses the historical data of the flight movement of an Asian airline based on Taoyuan International Airport in 2015, screens the 10 airports with the highest number of flight operations to construct aircraft routes, and analyzes various factors of flight delays. The network model is used to predict the probability of flight delay propagation. The results show that the late arrival of aircraft is the key delay factor for the identification of flight delay propagation. The Bayesian network can indeed establish a related prediction model. The effectiveness of the model can be verified and improved by cross-validation. Airlines can use the model structure of flight delay propagation to predict probability as reference indicator for decision-making, to improve flight punctuality and flight schedule robustness.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究流程與內容 3
第二章 文獻回顧 5
2.1 航班延誤的類別與原因之相關文獻 5
2.2 航班延誤擴散及預測之相關文獻 8
第三章 研究方法 15
3.1 研究架構 15
3.2 航班運行狀態及延誤資料 16
3.3 航機網路構建篩選 17
3.4 分析方法 19
第四章 資料蒐集與基本統計分析 22
4.1 資料來源與蒐集整理 22
4.2 基本統計分析 22
第五章 模式推估與分析結果 31
5.1 模型建構 31
5.2 模型推估與結果分析 46
5.2.1 初步驗證 48
5.2.2 模型校估 51
5.2.3 改良模型分析 59
5.2.4 貝氏網路與C4.5決策樹模式比較分析 67
第六章 情境模擬分析 72
6.1 首段航班來機晚到延誤對次段航班來機晚到延誤之影響 72
6.2 地面周轉時間對次段航班來機晚到延誤之影響 77
第七章 結論與建議 83
7.1 結論 83
7.2 討論與建議 85
參考文獻 87
附錄一 89
附錄二 96
(一)中文文獻
1. 許巧鶯、鍾惠存、黃惠如(2003),「航空公司班機誤點延滯擴散與控制之研究」,運輸計劃季刊,32(3),47-477。
2. 吳世偉、汪進財(2004),航機延誤擴散之預測--SIMMOD 模擬模式之應用分析,交通大學運輸研究所碩士論文。
3. 鄭祐昇(2004),運用資料探勘技術於知識圖之建立,東海大學工業工程與經營資訊研究所碩士論文。
4. 黃志勝(2018),交叉驗證,擷取日期:2019年12月1日,網站:https://medium.com/@chih.sheng.huang821/%E4%BA%A4%E5%8F%89%E9%A9%97%E8%AD%89-cross-validation-cv-3b2c714b18db。
5. 交通部民用航空局(2019),民用機場客運班機準點率統計報告。
(二)英文文獻
1. Abdelghany, K. F., Shah, S. S., Raina, S., & Abdelghany, A. F. (2004), “A model for projecting flight delays during irregular operation conditions,” Journal of Air Transport Management, 10(6), 385-394.
2. AhmadBeygi, S., Cohn, A., Guan, Y., & Belobaba, P. (2008), “Analysis of the potential for delay propagation in passenger airline networks,” Journal of Air Transport Management, 14(5), 221-236.
3. Cao, W., Ding, J., & Wang, H. (2008), “Analysis of sequence flight delay and propagation based on the bayesian networks,” Paper presented at the 2008 Fourth International Conference on Natural Computation.
4. Cao, W., & Fang, X. (2012), “Airport flight departure delay model on improved BN structure learning”, Physics Procedia, 33, 597-603.
5. Cooper, G. F., & Herskovits, E. (1992), “A Bayesian method for the induction of probabilistic networks from data”, Machine learning, 9(4), 309-347.
6. Fricke, H., & Schultz, M. (2009), “Delay impacts onto turnaround performance,” Paper presented at the ATM Seminar.
7. Kafle, N., & Zou, B. (2016), “Modeling flight delay propagation: A new analytical-econometric approach,” Transportation Research Part B: Methodological, 93, 520-542.
8. Kim, Y. J., Choi, S., Briceno, S., & Mavris, D. (2016), “A deep learning approach to flight delay prediction,” Paper presented at the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC).
9. Liu, Y.-J., & Ma, S. (2008), “Flight delay and delay propagation analysis based on bayesian network,” Paper presented at the 2008 International Symposium on Knowledge Acquisition and Modeling.
10. Liu, Y., & Wu, H. (2013), “A remixed bayesian network based algorithm for flight delay estimating,” International Journal of Pure and Applied Mathematics, 85(3), 465-475.
11. Liu, Y., & Yang, F. (2009), “Initial flight delay modeling and estimating based on an improved Bayesian network structure learning algorithm,” Paper presented at the 2009 Fifth International Conference on Natural Computation.
12. Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S. (2017), “A statistical approach to predict flight delay using gradient boosted decision tree,” Paper presented at the 2017 International Conference on Computational Intelligence in Data Science (ICCIDS).
13. Mueller, E., & Chatterji, G. (2002), “Analysis of aircraft arrival and departure delay characteristics,” Paper presented at the AIAA's Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical Forum.
14. Rodriguez, J. D., Perez, A., & Lozano, J. A. (2009), “Sensitivity analysis of k-fold cross validation in prediction error estimation,” IEEE transactions on pattern analysis and machine intelligence, 32(3), 569-575.
15. Tu, Y., Ball, M. O., & Jank, W. S. (2008), “Estimating flight departure delay distributions—a statistical approach with long-term trend and short-term pattern,” Journal of the American Statistical Association, 103(481), 112-125.
16. US Department of Transportation (2019), Air Travel Consumer Report.
17. Wang, P. T., Schaefer, L. A., & Wojcik, L. A. (2003), “Flight connections and their impacts on delay propagation,” Paper presented at the Digital Avionics Systems Conference, 2003. DASC'03. The 22nd.
18. Wong, J.-T., & Tsai, S.-C. (2012), “A survival model for flight delay propagation,” Journal of Air Transport Management, 23, 5-11.
19. Wu, C.-L. (2016), Airline operations and delay management: insights from airline economics, networks and strategic schedule planning, Routledge.
20. Wu, C.-L., & Law, K. (2019), “Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model,” Transportation Research Part E: Logistics and Transportation Review, 122, 62-77.
21. Wu, C.-L., & Truong, T. (2014), “Improving the IATA delay data coding system for enhanced data analytics,” Journal of Air Transport Management, 40, 78-85.
22. Wu, W., & Wu, C.-L. (2018), “Enhanced delay propagation tree model with Bayesian Network for modelling flight delay propagation,” Transportation Planning and Technology, 41(3), 319-335.
23. Wu, W., Wu, C.-L., Feng, T., Zhang, H., & Qiu, S. (2018), “Comparative analysis on propagation effects of flight delays: a case study of china airlines,” Journal of Advanced Transportation.
24. Xu, N., Donohue, G., Laskey, K. B., & Chen, C.-H. (2005), “Estimation of delay propagation in the national aviation system using Bayesian networks,” Paper presented at the 6th USA/Europe Air Traffic Management Research and Development Seminar.
25. Xu, N., Laskey, K. B., Chen, C.-H., Williams, S. C., & Sherry, L. (2007), “Bayesian network analysis of flight delays,” Paper presented at the Transportation Research Board 86th Annual Meeting, Washington, DC.
電子全文 電子全文(網際網路公開日期:20250718)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top