|
[1] ONEILL, T. W., et al. ”Back pain, disability, and radiographic vertebral fracture in European women: a prospective study”. Osteoporosis International, 15.9, pp.760-765, 2004. [2] COCKERILL, W., et al. ”Health-related quality of life and radiographic vertebral fracture”. Osteoporosis International, 15.2, pp.113-119, 2004. [3] FINK, Howard A., et al. ”What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa?”. Journal of bone and mineral research, 20.7, pp.1216-1222, 2005. [4] LINDSAY, Robert, et al. ”Risk of new vertebral fracture in the year following a fracture”. Jama, 285.3, pp.320-323, 2001. [5] LENTLE, Brian C., et al. ”Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures”. Can Assoc Radiol J, 58.1, pp.27-36, 2007. [6] FRANCIS, R. M., et al. ”Back pain in osteoporotic vertebral fractures”. Osteoporosis International, 19.7, pp.895-903, 2008. [7] WONG, Cyrus C.; MCGIRT, Matthew J. ”Vertebral compression fractures: a review of current management and multimodal therapy”. Journal of multidisciplinary healthcare, 6, pp.205, 2013. [8] DELMAS, Pierre D., et al. ”Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study”. Journal of Bone and Mineral Research, 20.4, pp.557-563, 2005. 50 [9] OLCZAK, Jakub, et al. ”Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithmsare they on par with humans for diagnosing fractures?”. Acta orthopaedica, 88.6, pp.581-586, 2017. [10] BURNS, Joseph E.; YAO, Jianhua; SUMMERS, Ronald M. ”Vertebral body compression fractures and bone density: automated detection and classification on CT images”. Radiology, 284.3, pp.788-797, 2017. [11] LATEEF, Humaira; PATEL, Deepak. ”What is the role of imaging in acute low back pain?”. Current reviews in musculoskeletal medicine, 2.2, pp.69-73, 2009. [12] BERRY, Gabriel E., et al. ”Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis”. Journal of Trauma and Acute Care Surgery, 59.6, pp.1410-1413, 2005. [13] VANDENBERG, James, et al. ”Blunt Thoracolumbar-Spine Trauma Evaluation in the Emergency Department: A Meta-Analysis of Diagnostic Accuracy for History, Physical Examination, and Imaging”. The Journal of emergency medicine, 56.2, pp.153-165, 2019. [14] GENANT, Harry K., et al. ”Vertebral fracture assessment using a semiquantitative technique”. Journal of bone and mineral research, 8.9, pp.1137-1148, 1993. [15] REDMON, Joseph, et al. ”You only look once: Unified, real-time object detection”. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016. [16] REDMON, Joseph; FARHADI, Ali. ”YOLO9000: better, faster, stronger”. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.7263-7271, 2017. [17] REDMON, Joseph; FARHADI, Ali. ”Yolov3: An incremental improvement”. arXiv preprint, arXiv:1804.02767, 2018. [18] PAN, Sinno Jialin; YANG, Qiang. ”A survey on transfer learning”. IEEE Transactions on knowledge and data engineering, 22.10, pp.1345-1359, 2009. 51 [19] RAGHU, Maithra, et al. ”Transfusion: Understanding transfer learning with applications to medical imaging”. arXiv preprint, arXiv:1902.07208, 2019. [20] HE, Kaiming, et al. ”Deep residual learning for image recognition”. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016. [21] HUANG, Gao, et al. ”Densely connected convolutional networks”. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700-4708, 2017. [22] SMITH, Leslie N. ”Cyclical learning rates for training neural networks”. IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464-472, 2017. [23] SMITH, Leslie N. ”A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and weight decay”. arXiv preprint, arXiv:1803.09820, 2018. [24] LONG, Jonathan; SHELHAMER, Evan; DARRELL, Trevor. ”Fully convolutional networks for semantic segmentation”. Proceedings of the IEEE conference on computer vision and pattern recognition., pp.3431-3440, 2015.. [25] RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. ”Unet: Convolutional networks for biomedical image segmentation”. International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, pp.234-241, 2015. [26] RAJPURKAR, Pranav, et al. ”Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning”. arXiv preprint, arXiv:1711.05225, 2017. [27] SELVARAJU, Ramprasaath R., et al. ”Grad-cam: Visual explanations from deep networks via gradient-based localization”. Proceedings of the IEEE International Conference on Computer Vision, pp.618-626, 2017. 52 [28] BURNS, Joseph E.; YAO, Jianhua; SUMMERS, Ronald M. ”Vertebral body compression fractures and bone density: automated detection and classification on CT images.” Radiology, 284.3, pp.788-797, 2017. [29] BINKLEY, Neil, et al. ”Lateral vertebral assessment: a valuable technique to detect clinically significant vertebral fractures”. Osteoporosis international, 16.12, pp.1513-1518, 2005
|