|
[1] Zachi I Attia, Suraj Kapa, Francisco Lopez-Jimenez, Paul M McKie, Dorothy J Ladewig, Gaurav Satam, Patricia A Pellikka, Maurice Enriquez-Sarano, Peter A Noseworthy, Thomas M Munger, et al. “Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram”. In: Nature medicine 25.1 (2019), pp. 70–74. [2] Zachi I Attia, Peter A Noseworthy, Francisco Lopez-Jimenez, Samuel J Asirvatham, Abhishek J Deshmukh, Bernard J Gersh, Rickey E Carter, Xiaoxi Yao, Alejandro A Rabinstein, Brad J Erickson, et al. “An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction”. In: The Lancet 394.10201 (2019), pp. 861–867. [3] Philip Bachman, R Devon Hjelm, and William Buchwalter. “Learning representations by maximizing mutual information across views”. In: Advances in Neural Information Processing Systems. 2019, pp. 15509–15519. [4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling”. In: arXiv preprint arXiv:1803.01271 (2018). [5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep clustering for unsupervised learning of visual features”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 132–149. [6] Carlos Carreiras, Ana Priscila Alves, André Lourenço, Filipe Canento, Hugo Silva, Ana Fred, et al. “BioSPPy: Biosignal Processing in Python”. In: Accessed on 3.28 (2015), p. 2018. [7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A simple framework for contrastive learning of visual representations”. In: arXiv preprint arXiv:2002.05709 (2020). [8] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. “Infogan: Interpretable representation learning by information maximizing generative adversarial nets”. In: Advances in neural information processing systems. 2016, pp. 2172–2180. [9] Susan Cheng, Michelle J Keyes, Martin G Larson, Elizabeth L McCabe, Christopher Newton-Cheh, Daniel Levy, Emelia J Benjamin, Ramachandran S Vasan, and Thomas J Wang. “Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block”. In: Jama 301.24 (2009), pp. 2571–2577. [10] Gari D Clifford, Ikaro Silva, Benjamin Moody, Qiao Li, Danesh Kella, Abdullah Shahin, Tristan Kooistra, Diane Perry, and Roger G Mark. “The PhysioNet/computing in cardiology challenge 2015: reducing false arrhythmia alarms in the ICU”. In: 2015 Computing in Cardiology Conference (CinC). IEEE. 2015, pp. 273–276. [11] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised visual representation learning by context prediction”. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 1422–1430. [12] Abdur R Feyjie, Reza Azad, Marco Pedersoli, Claude Kauffman, Ismail Ben Ayed, and Jose Dolz. “Semi-supervised few-shot learning for medical image segmentation”. In: arXiv preprint arXiv:2003.08462 (2020). [13] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. “Unsupervised scalable representation learning for multivariate time series”. In: Advances in Neural Information Processing Systems. 2019, pp. 4652–4663. [14] Antonio Fratini, Mario Sansone, Paolo Bifulco, and Mario Cesarelli. “Individual identification via electrocardiogram analysis”. In: Biomedical engineering online 14.1 (2015), p. 78. [15] Gabriel Garcia, Gladston Moreira, David Menotti, and Eduardo Luz. “Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO”. In: Scientific reports 7.1 (2017), pp. 1–11. [16] Behzad Ghazanfari, Fatemeh Afghah, Kayvan Najarian, Sajad Mousavi, Jonathan Gryak, and James Todd. “An Unsupervised Feature Learning Approach to Reduce False Alarm Rate in ICUs”. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2019, pp. 349– 353. [17] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals”. In: circulation 101.23 (2000), e215–e220. [18] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by learning an invariant mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735– 1742. [19] Pat Hamilton. “Open source ECG analysis”. In: Computers in cardiology. IEEE. 2002, pp. 101–104. [20] Giuseppe Jurman, Samantha Riccadonna, and Cesare Furlanello. “A comparison of MCC and CEN error measures in multi-class prediction”. In: PloS one 7.8 (2012). [21] Mohammad Kachuee, Shayan Fazeli, and Majid Sarrafzadeh. “Ecg heartbeat classification: A deep transferable representation”. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI). IEEE. 2018, pp. 443–444. [22] Richard E Katholi and Daniel M Couri. “Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications”. In: International journal of hypertension 2011 (2011). [23] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting self-supervised visual representation learning”. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2019, pp. 1920–1929. [24] Nikos Komodakis and Spyros Gidaris. “Unsupervised representation learning by predicting image rotations”. In: 2018. [25] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. “Large-scale long-tailed recognition in an open world”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 2537– 2546. [26] Dwarikanath Mahapatra. “Semi-supervised learning and graph cuts for consensus based medical image segmentation”. In: Pattern recognition 63 (2017), pp. 700–709. [27] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretextinvariant representations”. In: arXiv preprint arXiv:1912.01991 (2019). [28] George B Moody and Roger G Mark. “The impact of the MIT-BIH arrhythmia database”. In: IEEE Engineering in Medicine and Biology Magazine 20.3 (2001), pp. 45–50. [29] Sajad Mousavi and Fatemeh Afghah. “Inter-and intra-patient ecg heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 1308–1312. [30] Siti Nurmaini, Radiyati Umi Partan, Wahyu Caesarendra, Tresna Dewi, Muhammad Naufal Rahmatullah, Annisa Darmawahyuni, Vicko Bhayyu, and Firdaus Firdaus. “An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised Feature Extraction Technique”. In: Applied Sciences 9.14 (2019), p. 2921. [31] Keiichi Ochiai, Shu Takahashi, and Yusuke Fukazawa. “Arrhythmia Detection from 2-lead ECG using Convolutional Denoising Autoencoders”. In: Proceedings of the KDD. Vol. 18. 2018. [32] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. “Deep metric learning via lifted structured feature embedding”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 4004–4012. [33] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018). [34] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. “Context encoders: Feature learning by inpainting”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 2536–2544. [35] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434 (2015). [36] Pritam Sarkar and Ali Etemad. “Self-supervised learning for ecg-based emotion recognition”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 3217–3221. [37] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embedding for face recognition and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 815–823. [38] Shawn Tan, Guillaume Androz, Ahmad Chamseddine, Pierre Fecteau, Aaron Courville, Yoshua Bengio, and Joseph Paul Cohen. “Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery”. In: arXiv preprint arXiv:1910.09570 (2019). [39] Soo-Kng Teo, Jian Cheng Wong, Bo Yang, Feng Yang, Ling Feng, Toon Wei Lim, and Yi Su. “Reducing false arrhythmia alarms in the ICU”. In: 2015 Computing in Cardiology Conference (CinC). IEEE. 2015, pp. 1177–1180. [40] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. “Multi-similarity loss with general pair weighting for deep metric learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 5022–5030. [41] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. “How to Use t-SNE Effectively”. In: Distill (2016). doi: 10.23915/distill.00002. url: http://distill. pub/2016/misread-tsne. [42] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadiyaram, and Dhruv Mahajan. “ClusterFit: Improving Generalization of Visual Representations”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 6509–6518. [43] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. “Deep metric learning for person re-identification”. In: 2014 22nd International Conference on Pattern Recognition. IEEE. 2014, pp. 34–39. [44] Ye Yuan, Guangxu Xun, Qiuling Suo, Kebin Jia, and Aidong Zhang. “Wave2vec: Deep representation learning for clinical temporal data”. In: Neurocomputing 324 (2019), pp. 31–42. [45] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. “S4l: Selfsupervised semi-supervised learning”. In: Proceedings of the IEEE international conference on computer vision. 2019, pp. 1476–1485. [46] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In: European conference on computer vision. Springer. 2016, pp. 649–666. [47] Muhammad Zubair, Jinsul Kim, and Changwoo Yoon. “An automated ECG beat classification system using convolutional neural networks”. In: 2016 6th international conference on IT convergence and security (ICITCS). IEEE. 2016, pp. 1– 5.
|