跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/26 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐敬泓
研究生(外文):Hsu, Ching-Hong
論文名稱:延伸式閘極奈米帶場效電晶體之優化與蛋白質即時感測研究
論文名稱(外文):Optimization of Extended Gate Nanobelt Field Effect Transistor as Biosensor for Protein Real-time detection
指導教授:許鉦宗
指導教授(外文):Sheu, Jeng-Tzong
口試委員:潘扶民李耀坤陳家浩許鉦宗
口試委員(外文):Pan, Fu-MingLi, Yaw-KuenChen, Chia-HaoSheu, Jeng-Tzong
口試日期:2019-09-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:84
中文關鍵詞:延伸式閘極生醫感測即時感測蛋白質感測電容式電極時飄效應
外文關鍵詞:Extended-gate field effect transistorBiosensingReal-time detectionProtein detectionCapacitive electrodeDrift effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 1
緒論 1
1-1. 前言 1
1-1-1. 光學式生物感測器 2
1-1-2. 質量變化式生物感測器 2
1-1-3. 電化學式生物感測器 3
1-2. 電晶體式的電位感測元件 4
1-2-1. 金屬氧化物半導體場效電晶體結構與工作原理 6
1-2-2. 金屬氧化物半導體場效電晶體的操作 9
1-3. 離子感測電晶體 13
1-3-1. 電解質-介電層-半導體結構 14
1-3-2. ISFET 應用於感測的特點 15
1-4. 延伸式閘極場效電晶體 16
1-5. 非理想效應 17
1-5-1. 時飄效應 17
1-5-2. 遲滯現象 18
1-5-3. 鹽類屏蔽效應 20
1-6. 研究動機 21
第二章 23
文獻回顧 23
2-1. 離子感應場效電晶體與延伸式閘極場效電晶體 23
2-2. ISFET、EGFET 應用於生物分子感測 25
2-3. EGFET 感測電極類型選用 30
2-4. FET-Based 感測器之響應 31
第三章 34
實驗元件製作與量測驗證方法 34
3-1. 奈米帶場效電晶體製程 35
3-2. 電容式電極製程 37
3-3. 微流道製作 38
3-4. pH 值溶液配置 38
3-5. 生物樣品製備 39
3-6. 實驗架設 39
3-7. 生物分子修飾 40
3-7. 生物分子修飾結果驗證方法 44
3-8. 表面電位換算 44
第四章 45
結果與討論 45
4-1. 等效電路之電容分壓分析 45
4-2. NBFET 與電容式電極特性 51
4-2-1. 奈米帶場效電晶體特性 51
4-2-2. 電容式電極特性 53
4-3. 量測環境屏蔽條件分析與量測極限變化 55
4-4. 時飄效應補償 57
4-4-1. 電流補償法分析 59
4-4-2. 電流補償法測量與驗證 61
4-4-3. 補充暫時電壓法 (Supplement Temporary Voltage Method, STV) 63
4-5. 系統穩定度 65
4-6. 酸鹼值即時量測驗證 68
4-7. 蛋白質修飾驗證 71
4-8. 德拜長度選擇 74
4-9. 即時蛋白質感測與檢量線 76
4-10. 環境蛋白質非專一性吸附之干擾 79
第五章 82
結論與展望 82
參考文獻 83
[1] A. Roointan, T. A. Mir, S. I. Wani, M. Rehman, K. K. Hussain, B. Ahmed, S. Abrahim, A. Savardashtaki, G. Gandomani, M. Gandomani, R. Chinnappan, M. H. Akhtar, "Early detection of lung cancer biomarkers through biosensor technology: A review," J. Pharm. Biomed. Anal., vol. 164, pp. 93-103, 2019.
[2] J. Homola, "Present and future of surface plasmon resonance biosensors," Anal.
Bioanal. Chem., vol. 377, pp. 528-39, 2003.
[3] P. Singh, "SPR Biosensors: Historical Perspectives and Current Challenges," Sens. Actuator B-Chem., vol. 229, pp. 110-130, 2016.
[4] M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, B. Kasemo, "Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion," Faraday Discuss., vol. 107, pp. 229-246, 1997.
[5] B. R. Li, M. Y. Shen, H. H. Yu, and Y. K. Li, "Rapid construction of an effective antifouling layer on a Au surface via electrodeposition," Chem. Commun., vol. 50, pp. 6793-6796, 2014.
[6] Ü. Anik, "Electrochemical medical biosensors for POC applications," Med. Biosens. POC Appl., vol. 27, pp. 275-292, 2017.
[7] B. G. Streetman and S. Banerjee, Solid state electronic devices. England: Pearson Press, 2016.
[8] P. Bergveld, "ISFET, theory and practice," IEEE Sensor Conference, Toronto, vol. 328, 2003.
[9] T. E. Bae, H. J. Jang, J. H. Yang, and W. J. Cho, "High performance of silicon nanowire-based biosensors using a high-k stacked sensing thin film," ACS Appl. Mater. Interfaces, vol. 5, pp. 5214-5218, 2013.
[10] P. Woias, L. Meixner, and P. Fröstl, "Slow pH response effects of silicon nitride ISFET sensors," Sens. Actuator B-Chem., vol. 48, pp. 501-504, 1998.
[11] S. Schepel, N. De Rooij, G. Koning, B. Oeseburg, and W. Zijlstra, "In vivo experiments with a pH-ISFET electrode," Med. Biol. Eng. Comput., vol. 22, pp. 6-11, 1984.
[12] Y.-H. Liao and J.-C. Chou, "Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system," Sens. Actuator B-Chem., vol. 128, pp. 603-612, 2008.
[13] T. Matsuo and M. Esashi, "Methods of ISFET fabrication," Sens. Actuator, vol. 1, pp. 77-96, 1981.
[14] J.-L. Chiang, S.-S. Jan, J.-C. Chou, and Y.-C. Chen, "Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide," Sens. Actuator B-Chem., vol. 76, pp. 624-628, 2001.
[15] K.-M. Chang, K.-Y. Chao, T.-W. Chou, and C.-T. Chang, "Characteristics of Zirconium Oxide Gate Ion-Sensitive Field-Effect Transistors," Jpn. J. Appl. Phys., vol. 46, pp. 4333-4337, 2007.
[16] C.-H. Kao, H. Chen, J.-C. Wang, Y.-C. Chu, C.-S. Lai, S.-P. Lin, C.-Y. Huang, J.-C. Ou, "Deposition of High-k Samarium Oxide Membrane on Polysilicon for the Extented-Gate Field-Effect Transistor (EGFET) Applications," J. New. Mat. Electr. Sys., vol. 17, pp. 013-016, 2014.
[17] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Trans. Biomed. Eng., vol. BME-19, pp. 70-71, 1970.
[18] I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe," Sens. Actuator, vol. 4, pp. 291-298, 1983.
[19] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[20] T. Hiemstra and W. H. van Riemsdijk, "Oxide–Solution Interfaces: Surface Structure and Ion Complexation," Encyclopedia of Surface and Colloid Science: CRC Press, pp. 5170-5195, 2015.
[21] W. Guan, N. K. Rajan, X. Duan, and M. A. Reed, "Quantitative probing of surface charges at dielectric-electrolyte interfaces," Lab Chip, vol. 13, pp. 1431-1436, 2013.
[22] W. Guan, X. Duan, and M. A. Reed, "Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors," Biosens. Bioelectron., vol. 51, pp. 225-31, 2014.
[23] C.-W. Chen, B.-S. Yip, F.-M. Pan, and J.-T. Sheu, "Optimization of Nanobelt Field Effect Transistor with a Capacitive Extended Gate for Use as a Biosensor," ECS J. Solid State Sci. Technol., vol. 7, pp. 3172-3179, 2018.
[24] P. R. Nair and M. A. Alam, "Screening-limited response of nanobiosensors," Nano let., vol. 8, pp. 1281-1285, 2008.
[25] J. Fu et al., "Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell," IEEE Electron Device Lett., vol. 29, pp. 518-521, 2008.
[26] M. H. Lee et al., "The Significance of Serum HER2 Levels at Diagnosis on Intrinsic Subtype-Specific Outcome of Operable Breast Cancer Patients," PLoS One, vol. 11, pp. 163370-163381, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top