|
[1] Market Research Highlights. (2019). Global Gas Sensors Market 2014 - 2025 |Market Research Highlights. [online] Available at: https://www.marketresearchhighlights.org/industry-reports/gas-sensors-market/ [Accessed 2 Oct. 2019]. [2] Righettoni, M., Amann, A. and Pratsinis, S. (2015). Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 18(3), pp.163-171. [3] Gouma, P. (2011). Selective oxide sensors as non-invasive disease monitors. SPIE Newsroom. [4] William J Buttner, Robert M Burgess, Kara Schmidt, Kevin S Hartmann, Hannah Wright, Eveline Weidner, Rafael O Cebolla, Christian Bonato, and Pietro Moretto, "Hydrogen Safety Sensor Performance and Use Gap Analysis," National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017. [5] Simren, M. (2006). Use and abuse of hydrogen breath tests. Gut, 55(3), pp.297-303. [6] Timmer, B., Olthuis, W. and Berg, A. (2005). Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical, 107(2), pp.666-677 [7] Gu, H., Wang, Z. and Hu, Y. (2012). Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, 12(5), pp.5517-5550. [8] Hübert, T., Boon-Brett, L., Black, G. and Banach, U. (2011). Hydrogen sensors – A review. Sensors and Actuators B: Chemical, 157(2), pp.329-352. [9] Han, J., Rim, T., Baek, C. and Meyyappan, M. (2015). Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS Applied Materials & Interfaces, 7(38), pp.21263-21269. [10] Epifani, M., Prades, J., Comini, E., Pellicer, E., Avella, M., Siciliano, P., Faglia, G., Cirera, A., Scotti, R., Morazzoni, F. and Morante, J. (2008). The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals. The Journal of Physical Chemistry C, 112(49), pp.19540-19546. [11] Knoops, H., Potts, S., Bol, A. and Kessels, W. (2015). Atomic Layer Deposition. Handbook of Crystal Growth, pp.1101-1134. [12] Kim, J., Lee, H., Kang, D., Lee, K. and Kim, C. (2016). Effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films fabricated by low pressure chemical vapor deposition. Korean Journal of Chemical Engineering, 33(9), pp.2711-2715. [13] Choi, G., Satyanarayana, L. and Park, J. (2006). Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 thin films for gas sensing. Applied Surface Science, 252(22), pp.7878-7883.. [14] Kim, W., Lee, B., Kim, D., Kim, H., Yu, W. and Hong, S. (2010). SnO2nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 21(24), p.245605. [15] Park, I., Li, Z., Pisano, A. and Williams, R. (2007). Selective Surface Functionalization of Silicon Nanowires via Nanoscale Joule Heating. Nano Letters, 7(10), pp.3106-3111. [16] C.-H. Sang, "Impact of selective growth of nanostructured sensing materials in fluorescent biosensors and Si nanodevices as Hydrogen sensors," PhD, National Chiao Tung University, 2015. [17] Chen, C., Lin, Y., Sang, C. and Sheu, J. (2011). Localized Joule Heating As a Mask-Free Technique for the Local Synthesis of ZnO Nanowires on Silicon Nanodevices. Nano Letters, 11(11), pp.4736-4741. [18] Lin, R., Cheng, K., Pan, F. and Sheu, J. (2017). Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating. ACS Applied Materials & Interfaces, 9(46), pp.39935-39939. [19] C.-H. Sang, "Impact of selective growth of nanostructured sensing materials in fluorescent biosensors and Si nanodevices as Hydrogen sensors," PhD, National Chiao Tung University, 2015. [20] Chastain, J., Moulder, J. and King, R. (1992). Handbook of X-ray photoelectron spectroscopy. Physical electronics: Perkin-Elmer Corporation [21] Xpssimplified.com. (2019). Thermo Scientific X-ray Photoelectron Spectroscopy XPS. [online] Available at: https://xpssimplified.com/index.php [Accessed 22 Sep. 2019]. [22] Xpsfitting.com. (2019). X-ray Photoelectron Spectroscopy (XPS) Reference Pages. [online] Available at: http://www.xpsfitting.com/ [Accessed 22 Sep. 2019]. [23] Li, L., Zhang, C. and Chen, W. (2015). Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 7(28), pp.12133-12142. [24] Shanmugasundaram, A., Basak, P., Satyanarayana, L. and Manorama, S. (2013). Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p–n junctions and enhanced H2 sensing. Sensors and Actuators B: Chemical, 185, pp.265-273. [25] Yin, G., Sun, J., Zhang, F., Yu, W., Peng, F., Sun, Y., Chen, X., Xu, L., Lu, J., Luo, C., Ge, M. and He, D. (2019). Enhanced gas selectivity induced by surface active oxygen in SnO/SnO2 heterojunction structures at different temperatures. RSC Advances, 9(2019), pp.1903-1908. [26] Oprea, A., Bârsan, N. and Weimar, U. (2009). Work function changes in gas sensitive materials: Fundamentals and applications. Sensors and Actuators B: Chemical, 142(2), pp.470-493. [27] Batzill, M., Katsiev, K. and Diebold, U. (2004). Tuning the oxide/organic interface: Benzene on SnO2(101). Applied Physics Letters, 85(23), pp.5766-5768. [28] Ling, C., Xue, Q., Han, Z., Lu, H., Xia, F., Yan, Z. and Deng, L. (2016). Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions. Sensors and Actuators B: Chemical, 227, pp.438-447. [29] Gurlo, A. and Riedel, R. (2007). In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing. Angewandte Chemie International Edition, 46(21), pp.3826-3848. [30] Barsan, N. and Weimar, U. (2001). Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics, 7(3), pp.143-167. [31] Nhan Ai Tran.Hydrogen gas sensors from polysilicon nanobelt devices selectively modified with sensing materials. A Dissertation of Nanotechnology Department of National Chiao Tung University in Materials Science and Engineering December 2016 [32] Windischmann, H. (1979). A Model for the Operation of a Thin-Film SnOConductance-Modulation Carbon Monoxide Sensor. Journal of The Electrochemical Society, 126(4), p.627.
|