跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡政豪
研究生(外文):Chien, Cheng-Hao
論文名稱:局部焦耳熱進行選擇性沉積氧化錫奈米結構於矽奈米帶元件之氣體感測器研究
論文名稱(外文):Selective Deposition of Tin Oxide nanostructure at Silicon Nanobelt devices via Localized Joule Heating as Gas Sensors
指導教授:許鉦宗
指導教授(外文):Sheu, Jeng-Tzong
口試委員:潘扶民陳家浩陳振嘉
口試委員(外文):Pan, Fu-MingChen, Chia-HaoChen, Chen-Chia
口試日期:2019-11-04
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:氣體感測器二氧化錫矽奈米帶功函數氫氣氨氣
外文關鍵詞:gas sensorstin oxidesilicon nanobeltwork functionhydrogenammonia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本次研究整合了多晶矽雙接面奈米帶元件之焦耳熱效應以及電漿原子層沉積技術,使我們的氣敏材料二氧化錫能在無光罩的情況下選擇性的修飾在我們元件之低摻雜區(n-),利用高低摻雜( n+ /n- /n+ )結構之雙接面多晶矽奈米帶元件施加電壓時低摻雜區之焦耳自熱,結合電漿輔助原子層沉積(PE-ALD)系統之不同溫度時之沉積行為特性,選擇性沉積二氧化錫奈米結構於多晶矽奈米帶元件之低摻雜區,並應用於氫氣以及氨氣的感測。由於輕摻雜的緣故,n- 區域相較n+ 具有較長的迪拜長度,意味著他在感測上會較為靈敏,除此之外,我們也透過外部加熱的方式交叉比對出不同電壓下n- 區域之表面溫度,並且探討局部加熱對ALD成長速率的影響。在PE-ALD系統中合成之二氧化錫薄膜以二醋酸二丁基錫(DBTDA)做為前驅物,並透過ellipsometry、SEM以及XPS分析其材料特性,另外,藉由比較不同的基板溫度、電漿功率、反應循環數之等參數所沉積之材料特性,選擇出元件最佳之沉積參數。製備好的元件被裝設在以PDMS製成的小腔體進行氫氣以及氨氣的檢測,並透過施加不同的電壓自我加熱找出元件最適合之工作溫度,此外,我們也量測不同濃度之氫氣,以及不同環境下之氨氣感測特性,最後,我們提出了基於功函數之感測機制模型。
In this thesis, we utilized device-localized Joule heating in plasma enhanced atomic layer deposition (PE-ALD) system, for selectivity deposition of tin oxide(SnO2) nanostructure in the n- regions of n+ /n- /n+ polysilicon nanobelts (PNBs) as a gas sensor. Due to the lightly doping, The n- region has longer debye length than n+ region, it means that this region will more sensitive. Additionally, the n- region surface temperature was estimated via thermal chuck I-V(T) measurements for ALD deposition. SnO2 thin film synthesized by PE-ALD using dibutyltin-diacetate(DBTDA) as precursor, and the material characteristic was investigated by ellipsometry, SEM and XPS. Besides, the process parameters were optimized as functions of the substrate temperature, plasma power, the number of process cycles. Prepared device were settled in a small PDMS chamber to perform hydrogen and ammonia detection, and the working self-heating temperatures were investigated for the best response in both hydrogen and ammonia sensing. Furthermore, we also analyzed different concentration hydrogen in the range of 10 to 1000 ppm, and the ammonia sensing property under different carrier gas. Finally, model of work function-based sensing mechanism was presented.
中文摘要 II
ABSTRACT III
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章、 緒論 1
1-1 前言 1
1-2 氣體特性簡介 3
1-2-1 氫氣(Hydrogen, H2) 3
1-2-2 氨氣(Ammonia, NH3) 4
1-3 氧化物半導體(Semiconductor Metal Oxide, SMO)奈米結構氣體感測器 6
1-3-1 電阻式氣體感測器 6
1-3-2 功函數式氣體感測器 9
1-4 化學式閘極場效電晶體(Chemical Gated Field Effect Transistor, CGFET) 10
1-5 氧化錫(SnO2) 12
1-5-1 二氧化錫特性 12
1-5-2 氣體感測之應用 12
1-6 原子層沉積(Atomic Layer Deposition, ALD) 13
1-6-1 原子層沉積 13
1-6-2 電漿輔助原子層沉積技術合成二氧化錫 14
1-7 焦耳熱選擇性沉積之應用 15
1-8 研究動機與實驗架構 18
1-8-1 研究動機 18
1-8-2 實驗架構 18
第二章、 元件製備與材料製程 19
2-1 多晶矽奈米帶元件製作流程及特性 19
2-2 多晶矽奈米帶之溫度分析 24
2-3 電漿輔助原子層沉積技術合成二氧化錫 26
2-4 局部焦耳熱效應輔助選擇性沉積二氧化錫 28
2-5 氣體感測系統 29
第三章、 結果與討論 31
3-1 PE-ALD合成二氧化錫於矽基板上之薄膜分析 31
3-1-1 ALD Window 31
3-1-2 XPS(X-ray Photoelectron Spectroscopy) 分析 32
3-2 局部焦耳焦耳熱效應輔助選擇性沉積二氧化錫於矽奈米帶元件 38
3-3 感測機制 39
3-3-1 二氧化錫氣體感測機制 39
3-3-2 雙接面矽奈米帶元件之感測機制 42
3-3-3 溫度影響感測機制 45
3-4 氣體量測 46
3-4-1 氫氣感測 46
3-4-2 氨氣感測 52
第四章、 結論與展望 57
4-1 結論 57
4-2 未來展望 57
參考文獻 58
[1] Market Research Highlights. (2019). Global Gas Sensors Market 2014 - 2025 |Market Research Highlights. [online] Available at: https://www.marketresearchhighlights.org/industry-reports/gas-sensors-market/ [Accessed 2 Oct. 2019].
[2] Righettoni, M., Amann, A. and Pratsinis, S. (2015). Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 18(3), pp.163-171.
[3] Gouma, P. (2011). Selective oxide sensors as non-invasive disease monitors. SPIE Newsroom.
[4] William J Buttner, Robert M Burgess, Kara Schmidt, Kevin S Hartmann, Hannah Wright, Eveline Weidner, Rafael O Cebolla, Christian Bonato, and Pietro Moretto, "Hydrogen Safety Sensor Performance and Use Gap Analysis," National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017.
[5] Simren, M. (2006). Use and abuse of hydrogen breath tests. Gut, 55(3), pp.297-303.
[6] Timmer, B., Olthuis, W. and Berg, A. (2005). Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical, 107(2), pp.666-677
[7] Gu, H., Wang, Z. and Hu, Y. (2012). Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, 12(5), pp.5517-5550.
[8] Hübert, T., Boon-Brett, L., Black, G. and Banach, U. (2011). Hydrogen sensors – A review. Sensors and Actuators B: Chemical, 157(2), pp.329-352.
[9] Han, J., Rim, T., Baek, C. and Meyyappan, M. (2015). Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS Applied Materials & Interfaces, 7(38), pp.21263-21269.
[10] Epifani, M., Prades, J., Comini, E., Pellicer, E., Avella, M., Siciliano, P., Faglia, G., Cirera, A., Scotti, R., Morazzoni, F. and Morante, J. (2008). The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals. The Journal of Physical Chemistry C, 112(49), pp.19540-19546.
[11] Knoops, H., Potts, S., Bol, A. and Kessels, W. (2015). Atomic Layer Deposition. Handbook of Crystal Growth, pp.1101-1134.
[12] Kim, J., Lee, H., Kang, D., Lee, K. and Kim, C. (2016). Effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films fabricated by low pressure chemical vapor deposition. Korean Journal of Chemical Engineering, 33(9), pp.2711-2715.
[13] Choi, G., Satyanarayana, L. and Park, J. (2006). Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 thin films for gas sensing. Applied Surface Science, 252(22), pp.7878-7883..
[14] Kim, W., Lee, B., Kim, D., Kim, H., Yu, W. and Hong, S. (2010). SnO2nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 21(24), p.245605.
[15] Park, I., Li, Z., Pisano, A. and Williams, R. (2007). Selective Surface Functionalization of Silicon Nanowires via Nanoscale Joule Heating. Nano Letters, 7(10), pp.3106-3111.
[16] C.-H. Sang, "Impact of selective growth of nanostructured sensing materials in fluorescent biosensors and Si nanodevices as Hydrogen sensors," PhD, National Chiao Tung University, 2015.
[17] Chen, C., Lin, Y., Sang, C. and Sheu, J. (2011). Localized Joule Heating As a Mask-Free Technique for the Local Synthesis of ZnO Nanowires on Silicon Nanodevices. Nano Letters, 11(11), pp.4736-4741.
[18] Lin, R., Cheng, K., Pan, F. and Sheu, J. (2017). Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating. ACS Applied Materials & Interfaces, 9(46), pp.39935-39939.
[19] C.-H. Sang, "Impact of selective growth of nanostructured sensing materials in fluorescent biosensors and Si nanodevices as Hydrogen sensors," PhD, National Chiao Tung University, 2015.
[20] Chastain, J., Moulder, J. and King, R. (1992). Handbook of X-ray photoelectron spectroscopy. Physical electronics: Perkin-Elmer Corporation
[21] Xpssimplified.com. (2019). Thermo Scientific X-ray Photoelectron Spectroscopy XPS. [online] Available at: https://xpssimplified.com/index.php [Accessed 22 Sep. 2019].
[22] Xpsfitting.com. (2019). X-ray Photoelectron Spectroscopy (XPS) Reference Pages. [online] Available at: http://www.xpsfitting.com/ [Accessed 22 Sep. 2019].
[23] Li, L., Zhang, C. and Chen, W. (2015). Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 7(28), pp.12133-12142.
[24] Shanmugasundaram, A., Basak, P., Satyanarayana, L. and Manorama, S. (2013). Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p–n junctions and enhanced H2 sensing. Sensors and Actuators B: Chemical, 185, pp.265-273.
[25] Yin, G., Sun, J., Zhang, F., Yu, W., Peng, F., Sun, Y., Chen, X., Xu, L., Lu, J., Luo, C., Ge, M. and He, D. (2019). Enhanced gas selectivity induced by surface active oxygen in SnO/SnO2 heterojunction structures at different temperatures. RSC Advances, 9(2019), pp.1903-1908.
[26] Oprea, A., Bârsan, N. and Weimar, U. (2009). Work function changes in gas sensitive materials: Fundamentals and applications. Sensors and Actuators B: Chemical, 142(2), pp.470-493.
[27] Batzill, M., Katsiev, K. and Diebold, U. (2004). Tuning the oxide/organic interface: Benzene on SnO2(101). Applied Physics Letters, 85(23), pp.5766-5768.
[28] Ling, C., Xue, Q., Han, Z., Lu, H., Xia, F., Yan, Z. and Deng, L. (2016). Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions. Sensors and Actuators B: Chemical, 227, pp.438-447.
[29] Gurlo, A. and Riedel, R. (2007). In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing. Angewandte Chemie International Edition, 46(21), pp.3826-3848.
[30] Barsan, N. and Weimar, U. (2001). Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics, 7(3), pp.143-167.
[31] Nhan Ai Tran.Hydrogen gas sensors from polysilicon nanobelt devices selectively modified with sensing materials. A Dissertation of Nanotechnology Department of National Chiao Tung University in Materials Science and Engineering December 2016
[32] Windischmann, H. (1979). A Model for the Operation of a Thin-Film SnOConductance-Modulation Carbon Monoxide Sensor. Journal of The Electrochemical Society, 126(4), p.627.
電子全文 電子全文(網際網路公開日期:20241105)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊