(44.192.112.123) 您好!臺灣時間:2021/03/04 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳柏翰
研究生(外文):Po-Han Wu
論文名稱:正交性合成岩體之模擬技術
論文名稱(外文):Simulation program of synthetic rock mass for orthotropic cases
指導教授:田永銘田永銘引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:151
中文關鍵詞:PFC3D合成岩體正交性正定性
外文關鍵詞:PFC3Dsynthetic rock massorthotropicpositive definite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文以PFC3D(Particle Flow in 3 Dimension)及FracMan建立正交性合成岩體(synthetic rock mass, SRM)之模擬技術,並探討不同裂隙程度(P32)、取樣體積、裂隙直徑(D)及費雪常數(κ)對正交性岩體力學性質及其變異性之影響。本文亦針對類橫向等向性岩體進行相關模擬,並與前人研究之橫向等向性岩體進行比較。透過一系列SRM模擬結果顯示:裂隙程度、取樣體積、裂隙直徑及費雪常數皆對岩體力學性質及其變異性有所影響。隨著岩體裂隙程度、裂隙直徑增加,其正規化力學性質將降低,力學性質變異係數則隨之增加。岩體力學性質變異係數(CV)與取樣體積開根號成反比,並遵守中央極限定理。費雪常數增加,岩體之正規化力學性質平均值將隨之上升,變異係數則隨之下降,岩體行為逐漸由等向性轉為異向性。最後,本文以數值模擬獲得正交性合成岩體之應力應變組成律,其組成律柔度矩陣(compliance matrix)符合Amadei (1987)之正定性(positive definite)檢核。
This paper uses Particle Flow in 3 Dimension (PFC3D) and FracMan to establish a simulation program of synthetic rock mass (SRM) for orthotropic cases. Besides, this paper discusses the effects of fracture intensity (P32), sampling volume, fracture diameter (D) and Fisher constant (κ) on the mechanical properties and the variation of orthotropic rock mass. In addition, this paper conducts numerical simulations for transversely isotropic rock mass and compares them with previous research results. Based on the SRM numerical simulation results, the fracture intensity, sampling volume, fracture diameter and Fisher constant all have strong effects on the mechanical properties and variation of rock mass. The normalized mechanical properties of rock mass decrease with the increase of fracture intensity and fracture diameter. Conversely, the variation increase with the increase of fracture intensity and fracture diameter. In addition, the coefficient of variations (CV) of mechanical properties of rock mass are inversely proportional to the squared root of sampling volume, which conforms the central limit theorem. As the Fisher constant increases, the mean value of the normalized mechanical properties of rock mass will increase, the coefficient of variation will decrease, and the rock mass behavior will gradually change from isotropic to anisotropic. Finally, the composition law of orthotropic rock mass via conducting a series of numerical tests, and the compliance matrix was validated with the positive definite of Amadei (1987).
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 XIV
第一章、 緒論 1
1.1 .研究動機 1
1.2 研究方法 3
1.3 研究目的 4
1.4 研究架構 4
第二章、 文獻回顧 5
2.1 岩體之異向性 5
2.2 正交性岩體之組成律 6
2.3 正交性岩體之彈性常數決定 9
2.4 組成律之正定性 10
2.5 裂隙含量之描述 13
2.6 合成岩體模型(SRM) 15
2.7 裂隙岩體幾何及力學性質不確定性 26
2.8 FracMan軟體介紹 30
2.9 Esmaieli(2010)探討岩體之REV 32
第三章、 研究步驟 37
3.1 研究流程 37
3.2 建立正交性合成岩體 39
3.2.1 離散裂隙網絡之生成 39
3.2.2 微觀參數設定 42
3.2.3 合成岩體之建立 45
3.3 完整岩石之力學性質 48
第四章、 正交性岩體之模擬結果與討論 51
4.1 正交性合成岩體之建立 51
4.2 正交性岩體之對稱性驗證 56
4.2.1 彈性常數決定 56
4.2.2 應力應變組成律 60
4.2.3 組成律正定性 60
4.2.4 數值模擬與實驗室試驗比較 63
4.3 正交性岩體力學性質之影響因素 65
4.3.1裂隙程度的影響 65
4.3.2裂隙直徑的影響 69
4.4正交性岩體裂隙程度之變異性 73
4.4.1裂隙程度之變異性解析解 73
4.4.2裂隙程度之變異性數值解 74
4.5正交性岩體力學性質之變異性 82
4.5.1裂隙程度之影響 83
4.5.2取樣體積之影響 92
4.5.3費雪常數之影響 98
4.5.4裂隙直徑之影響 113
4.6正交性岩體性質之變異係數比較 117
4.7類橫向等向性岩體 119
4.8裂隙組數對與力學性質的關係 123
第五章、 結論與建議 125
5.1結論 125
5.2建議 127
參考文獻 128
1.田永銘、鄭華恩、曾禹昕、盧育辰、許哲睿,「以合成岩體模式決定表徵單元體尺寸」,科技部專題研究計畫期末報告,MOST 106-2221-E-008-034 (2018)。
2.田永銘、盧育辰、許哲睿、鄭華恩、法麗佳,「裂隙岩體幾何與力學表徵單元體積及其力學性質」,科技部專題研究計畫期末報告,MOST 105-2221-E-008-026 (2017)。
3.田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
4.吳宛庭,「三維裂隙網路升尺度方法推估等校參數之差異評估」,碩士論文,國立中央大學,桃園 (2016)。
5.吳得聖,「非均質正交性介質波傳問題之研究」,碩士論文,國立聯合大學,苗栗 (2012)。
6.許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文,國立中央大學,桃園 (2017)。
7.曾禹昕,「裂隙岩體水力傳導係數之不確定性」,碩士論文,國立中央大學,桃園 (2019)。
8.程泓皓,「以PFC2D模擬併構岩單壓強度及變形性」,碩士論文,國立中央大學,桃園 (2014)。
9.劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學,桃園 (2013)。
10.劉明坤,「離散裂隙網路數值模擬:以花蓮溪畔坑道花崗片麻岩體為例」,碩士論文,國立中正大學,嘉義 (2014)。
11.鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學,桃園 (2019)。
12.鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南市,2018年7月。
13.Amadei, B., “Importance of Anisotropy When Estimating and Measuring In Situ Stresses in Rock,” Int J Rock Mech Min Sci & Geomech Abstr, Vol.33, No. 3, pp.293-325 (1996)
14.Amadei, B., and Pan, E., “Gravitational Stresses in Anisotropic Rock Masses with Inclined Strata,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 9, No. 3, pp.225-236 (1992)
15.Amadei, B., Savage, W.Z., and Swolfs, H.S., “Gravitational stress in anisotropic rock masses,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 24, pp.5-14 (1987)
16.Annandale, G.W., “Erodibility,” Journal of Hydraulic Research, Vol.33, pp.471-494 (1995)
17.Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989)
18.Brady, B.H.G, and Brown, E.T., “Rock Mechanics for Underground Mining,” Allen & Unwin (1985)
19.Cundall, P.A., Pierce, M.E., and Ivars, D.M., “Quantifying the Size Effect of Rock Mass Strength,” In: Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics (ACG), Vol. 2, pp. 3-15, (2008).
20.Deere, D.U., and Miller, R.P., Engineering classification and index properties for intact rock, University of Illinois, American (1966)
21.Dershowitz, W.S., “Rock joint systems,” Ph.D. Dissertation, Massachusetts Institute of Technology (1984).
22.Dershowitz, W.S., and Einstein, H.H., “Characterizing rock joint geometry with joint system models,” Journal of Rock Mechanics and Rock Engineering, Vol. 21, pp. 21–51 (1988).
23.Dershowitz, W.S., and Schrauf T.S., Discrete Fracture Flow Modeling With The Jinx Package, American Rock Mechanics Association, American (1987).
24.Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
25.Gercek, H., “Poisson’s ratio values for rocks,” Int J Rock Mech Min Sci, Vol. 44, pp. 1-13 (2007).
26.Grenon, M., and Hadjigeorgiou, J., “Fracture-SG, A fracture system generator software package,” Version 2.17(2008).
27.Hoek, E., and Brown E.T., “Practical Estimates of Rock Mass Strength,” Int J Rock Mech Min Sci, Vol. 34, No. 8, pp. 171-180 (1997).
28.Huang, D., Wang, J., and Liu, Su., “A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses,” Granular Matter, Vol. 17(6), pp. 775-791 (2015).
29.Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions), Version 5.0, MN 55401 (2013).
30.Ivars, D.M., Pierce, M.E., and Darcel, C., “Anisotropy and scale dependency in jointed rock-mass strength – A Synthetic Rock Mass Study,” In: Proceedings of the 1st International FLAC/DEM Aymposium on Numerical Modeling, pp. 231-239 (2008).
31.Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
32.Khanlari, G., Rafiei B. and Abdilor Y. (2014), “Evaluation of strength anisotropy and failure modes of laminated sandstones,” Arabian Journal of Geosciences, Vol. 8, pp. 3089-3102.
33.Lu, Y.C., (2018) “Uncertainties of geometrical and mechanical properties of heterogeneous media and discontinuous rock masses,” PhD dissertation, Dept. of Civil Engineering, National Central University, Taoyuan, Taiwan.
34.Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
35.Pine R.J., Coggan J.S., Flynn Z.N., Elmo D., “The Development of a new Numerical Modelling Approach for Naturally Fractured Rock Masses,” Rock Mech. Rock Engng., Vol.39(5), pp.395-419. (2006)
36.Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
37.Poulsen, B.A., Adhikary, M.K., Elmouttie, M.K., and Wilkins, A., “Convergence of synthetic rock mass modelling and Hoek-Brown strength criterion,” Int J Rock Mech Min Sci, Vol. 80, pp. 171-180 (2015).
38.Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
39.Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412 (2001).
40.Wang, T., Xu, D., and Elsworth, D., “Distinct element modeling of strength variation in jointed rock masses under uniaxial compression,” Geomech Geophys Geo-, Vol. 2, pp. 11-24 (2016)
41.Wittke, W., Rock Mechanics, Springer-Verlag Berlin Heidelberg, German, pp.61-63 (1990)
42.Wu, Q., Kulatilake, P.H.S.W., “REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China,” Computers Geotechnics, Vol.43, pp.124–142. (2012)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔