(3.236.222.124) 您好!臺灣時間:2021/05/13 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宸毅
研究生(外文):Chen-Yi Lin
論文名稱:鍋爐衍生灰渣特性分析及再利用於混凝土製品之實驗評估
指導教授:黃偉慶黃偉慶引用關係
指導教授(外文):Wei-Hsing Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:165
中文關鍵詞:飛灰底灰高壓混凝土地磚透水混凝土地磚
外文關鍵詞:CLSM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要針對設有燃燒輔助燃料鍋爐之造紙廠及染整廠,將鍋爐衍生灰渣材料進行特性與資源化再利用技術之可行性研究。依廠內使用現況選定三種鍋爐衍生灰渣:(1)漿紙污泥混燒灰、(2)廢棄物衍生燃料(Refuse-derived fuel,RDF)混燒灰(3)木顆粒灰。另外取用電廠飛灰進行比較,依據上述四種材料之飛灰及底灰,進行土木材料相關之物理性質及化學性質基本試驗,探討其材料之特性。
從基本特性實驗結果得知,漿紙污泥混燒飛灰(PSFA)燒失量高達14.8%,矽鋁鐵氧化物總含量為48.3%,以20%wt.取代水泥28天強度活性指數仍可達80%;RDF混燒飛灰(RDFFA)則具有金屬鋁之化學成分,與水泥摻配後,有膨脹現象發生影響致使強度活性指數僅為68%;木顆粒飛灰(WPFA)則是因含有木質磺酸鈣與磷酸鹽類,與水泥摻配時,致使初凝時間為415分鐘。漿紙污泥混燒底灰(PSBA)、RDF混燒底灰(RDFBA)以及木顆粒底灰(WPBA),SSD比重與視比重差異可達0.18至0.34,其中又以WPBA最為明顯,表示該底灰有較多之孔隙。
本研究將資源化再利用的方式應用於:(1)控制性低強度回填材(CLSM)、(2)高壓混凝土地磚與(3)透水性混凝土地磚。CLSM中PSFA與WPFA以100%體積取代CFA以及PSBA與WPBA以50%體積取天然細粒料時28天抗壓強度可達規範標準20kgf/cm2以上;高壓混凝土地磚試驗結果上顯示WPFA作為填充材以體積取代20%天然細粒料使用,抗壓強度已降至27Mpa,僅可達B級磚標準,在使用時須審慎評估;當PSFA應用於透水混凝土地磚以100%體積取代細粒料時,調整水灰比至0.27時,可保有一定的抗壓強度與透水性能。
This research aims at the derived fly ash and bottom ash which are produced by co-firing coal and waste materials for recycling use, and assess the properties of these waste and the feasibility of their reuses. According to the current status of the domestic boiler plant, three types of ashes are selected: (1)Paper sludge ash (PS), (2)Refuse derived fuel ash (RDF),(3)Wood pellets ash (WP). In order to evaluate the potential of the co-combustion fly ashes as pozolanic material for replacement of cement, the physical and chemical properties of these ashes were experimentally determined and compared with the pulverized fly ash (FA) produced from power plants burning pure coal.
From the characteristic experiment results that the PSFA’s loss on ignition is 14.8% and the total content of silicon aluminum iron oxide is 48.3%. when it replacing cement with 20%wt. 28 days strength activity index can reach 80%.When the RDFFA has the chemical composition of aluminum. After mixing with cement, the expansion phenomenon will affect the strength activity index to only 68%.WPFA has calcium lignosulfonate and phosphate,when it mix with cement ,the initial setting timeis 415 minutes. PSBA,RDFBA and WPBA difference between SSD specific gravity and apparent specific gravity can reach 0.18 to 0.34, among which WPBA is the most obvious,it means that the WPBA has more pores.
In this the method of resource reuse is applied to: (1)Controlled low strength materials(CLSM) and (2)Compressed concrete paving units (3) Permeable concrete paving blocks.The results of CLSM PSFA and WPFA replace CFA with 100% by volume and PSBA and WPBA replace natural fine aggregate with 50% by volume the 28days compressive strength can reach more than 20kgf/cm2 of the standard. The test results of compressed concrete paving units show that WPFA is used as a filler to replace 20% of natural fine aggregate by volume and the compressive strength has been reduced to 27Mpa, which can reach the standard of grade B bricks and must be carefully evaluated when used. When PSFA is applied to permeable concrete paving blocks to replace fine particles with 100% volume,W/C is adjusted to 0.27, it can maintain a certain compressive strength and water permeability.
摘要 ………………………………………………………………..i
ABSTRACT ii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究方法及內容 3
1.5 名詞定義 4
第二章 文獻回顧 5
2.1國內鍋爐與輔助燃料使用狀況 5
2.1.1國內鍋爐產業現況 5
2.1.2國內鍋爐種類 6
2.1.3 輔助燃料種類 7
2.2鍋爐衍生灰渣材料種類 12
2.2.1燃煤飛灰 12
2.2.2污泥類混燒灰渣 15
2.2.3 固態廢棄物衍生灰渣 16
2.2.4 木質燃料灰渣 17
2.3流體化床鍋爐與灰渣 22
2.3.1流體化床鍋爐燃燒情形 23
2.3.2流體化床鍋爐脫硫與脫硝技術 24
2.3.3石膏水化反應之機理特性 25
2.3.4鍋爐差異對飛灰性質之影響 27
2.4資源化再利用現況 34
2.4.1 控制性低強度回填材CLSM 34
2.4.2高壓混凝土地磚 42
2.4.3透水混凝土地磚 43
第三章 研究材料及方法 50
3.1研究材料 50
3.1.1研究材料來源說明 50
3.1.2研究材料基本特性概述 52
3.2研究流程 56
3.2.1研究規劃說明 56
3.2.2研究試驗階段說明 57
3.3試驗儀器與方法 62
第四章 材料性質研究結果與分析 75
4.1鍋爐衍生飛灰 75
4.1.1 鍋爐衍生飛灰之特性 75
4.1.2 鍋爐衍生飛灰之微觀分析 84
4.1.3 鍋爐衍生飛灰作為卜作嵐材料之性質評估 86
4.1.4 鍋爐衍生飛灰與電廠飛灰之差異 95
4.2研究材料之底灰 96
4.2.1 鍋爐衍生底灰之特性 96
第五章 鍋爐灰渣再利用試驗 101
5.1 再利用於控制性低強度回填材料(CLSM) 101
5.1.1 CLSM配比參考依據 102
5.1.2CLSM新拌性質試驗 104
5.1.3 CLSM硬固性質試驗 111
5.2再利用於混凝土製品-高壓混凝土地磚 113
5.3再利用於混凝土製品-透水混凝土地磚 117
5.3.1不同取代量對於抗壓強度、連通孔隙率、滲透係數之影響 117
5.3.2不同水灰比對PSFA透水混凝土地磚之影響 120
5.4 RDF混燒飛灰(RDFFA)材料再利用評估 124
5.4.1RDFFA膨脹現象 125
5.4.2 RDFFA再利用途徑 131
第六章、結論與建議 135
6.1結論 135
6.2建議 137
王銘澤,「生質燃料鍋爐飛灰與底渣特性分析及再利用評估」,碩士論文,國立中央大學,桃園,2017。
蕭柏洋,「生質燃料灰渣汁再利用與在處理方法探討」,碩士論文,國立中央大學,桃園2018。
張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥,生質燃料應用評估與示範,行政院環境保護署環境檢驗所,2013。
經濟部,https://www.moea.gov.tw/Mns/populace/home/Home.aspx
行政院環保署事業廢棄物申報及管理資訊系統,https://waste.epa.gov.tw/prog/IndexFrame.asp。
萬皓鵬.李宏台,廢棄物衍生燃料的使用,2010。
黨輝,王洪昇,黃紅,楊愛麗,「循環流化床脫硫灰渣的特性及應用初探 」,環保技術,中國,2004。
朱尚文,「循環流化床固硫灰特性及做水泥混合材應用的研究」,中國建築材料科學研究總院碩士論文,2011。
徐登文,「燃煤飛灰與底灰應用於CLSM之早強性質研究」,碩士論文,國立中興大學,台中,2002。
魏存弟、杨殿范、李益、三国彰,「煅烧温度对高岭石相转变过程及Si、Al活性的影响」,礦物學報,第三期,574-578,2005。
CNS3036飛灰混凝土用飛灰及天然或鍛燒卜作嵐攙和物。
黃兆龍,「卜作嵐混凝土使用手冊」,2007。
黃兆龍,「混凝土性質和行為」,詹式出版社,1999。
“水利工程構造物混凝土施工規範研究成果報告”,經濟部水利署,2012。
許俊傑,”套討高飛灰含量混凝土之物理性與耐久性”,正修科技大學營建工程研究所,碩士論文,高雄,2012。
蘇冠宇,”高飛輝摻量混凝土之工程性質研究”,中興大學土木研究所,碩士論文,台中,2011。
行政院公共工程委員會, ”公共工程飛灰混凝土使用手冊”,1999。
紀宗男,「淨水污泥餅資源化應用於管溝回填材料之研究」,碩士論文,淡江大學,台北,2003。
余岳峰,「下水污泥焚化灰渣燒成輕質粒料特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園,2000。
台灣省鍋爐協會,特種機械設備安全,第33期,2014。
台灣電力股份有限公司,「高飛灰摻量混凝土產製技術與應用研究完成報告」,2011。
林耀聖,「產業污泥成型燃料化與灰渣卜作嵐特性研究」,碩士論文,桃園創新技術學院,桃園,2012
歐陽橋輝,許鎮龍,藍文忠,「都市污水處理廠污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,19-23,1998。
經濟部工業局,「研析鍋爐一般性飛灰及底渣混合物資源化可行技術」,2016。
錢覺時、鄭洪偉、王智、宋遠明、楊娟,「流化床燃煤固硫灰渣活性評定方法」,煤炭學報(Journal of China Coal Society),第31卷,第四期,506-510,2006。
馬志斌、常可可、燕可洲、張培華、程芳琴,「不同負荷下循環流化床鍋爐粉煤灰的理化性質研究」,潔淨煤技術(Clean Coal Technology),第22卷,第四期,20~25,2016。
行政院公共工程委員會,「高煤灰量控制性低強度回填材料」,施工綱要規範03377A章,2017。
Naik, T.R., Kraus, R.N., and Siddique, R., “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215., 2003.
Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M., “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060., 2009.
Cuenca, J., Rodriguez, J., Martin-Morales, M., Sanchez-Roldan, Z., and Zemorano, M., “Effects of olive residue biomass fly ash as filler in self-compacting concrete.” Construction and Building Materials, Vol. 40, pp. 702-709., 2013.
Sujivorakul, C., Jaturapitakkul, C., ASCE, A.M., and Taotip, A., “Utilization of Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash in Glass Fiber–Reinforced Concrete.” Journal of Materials in Civil Engineering, Vol.23, pp. 1281-1288., 2011.
Johari, M.A.M., Zeyad, A.M., Bunnori, N.M., and Ariffin, K.S., “Engineering and transport properties of highstrength green concrete containing high volume of ultrafine palm oil fuel ash.” Construction and Building Materials, Vol. 30, pp. 281-288., 2012.
Lim, N.H.A.S., Ismail, M.A, Lee, H.S., Hussin, M.W., Sam, R.M., and Samadi, M., “The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar.” Construction and Building Materials, Vol. 93, pp. 29-34., 2015.
Abdullahi, M., “Characteristics of Wood ASH/OPC Concrete.” Civil Engineering Department, Federal University of Technology, P.M.B. 65., 2006.
G.Yue, W.Li, Y.Wu, J.Lu, D.Che, “Structure and performance of a 600 MW supercritical CFB boiler with water cooled panels”., Proceedings of the 20th international conference on fluidized bed combustion., 2010.
M.Y.Tsai, K.T.Wu, C.C.Huang, H.T.Lee, “Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler”., 2002.
Yann-Hwang Wu, Ran Huang, Chia-Jung Tsai, Wei-Ting Lin, “Utilizing residues of CFB co-combustion of coal, sludge and TDF as an alkali activator in eco-binder”., 2015.
Sheng G, Zhai J, Li Q, Li F. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel; 86: 2625-31., 2007.
R.E.Conn, K.Sellakumar, “Utilization of CFB Fly Ash for Construction Application, Proceedings of the 15th International conference on Fluidized Bed Combustion” , 1999.
Xu, G.R., Zou, J.L., G., B., “Ceramsite Made with Water and Wastewater Sludge And its Characteristics Affected by SiO2 and Al2O3” ,Environmental Science and Technology. 42:7417-7423., 2008.
Xu, G.R., Zou, J.L., G., B., “Effect of sintering temperature on the characteristics of sludge ceramsite” ,Journal of Hazardous Materials. 150:394-400., 2008.
Riley, C. M., “Association of chemical process to the bloating clay” ,Journal of American Ceramic Scission. 34(4):121-128., 1951.
Ducman, V., and Mirtic, B., “The applicability of different waste materials for the production of lightweight aggregates”, Waste Mannagement. 29:2361-2368., 2009.
Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M., “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060., 2009.
Naik, T.R., Kraus, R.N., and Siddique, R., “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215., 2003.
Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., Ciardelli, G., Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138, 75e82., 2001.
Pettersson A, Zevenhoven M, Steenari B-M, Amand L-E. Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes. Fuel; 87:3183–93., 2008.
Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G., An overview of the chemical composition of biomass. Fuel 89, 913–933., 2010.
F.S.A., Araujo., R.T.R., Monteiro., Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge, Chemosphere 64, 1043-1046, 2006.
J, Balasubramanian., C, PC Sabumon., U, J, Lazar., R, Ilangovan., Reuse of textile effluent treatment plant sludge in building materials, Waste Management, 26, 22-28, 2006.
Bhatty, J.I., and K.J. Reid,. “Compressive Strength of Municipal Sludge Ash mortars. ” ACI Materials J., Vol.86, pp.394-400, 1989.
Tay, J.H., and K.Y. Show., “Reuse of Wastewater Sludge in Manufacturingnon-Conventional Construction Materials – an Innovative Approach Toultimate Sludge Disposal.” Water Science and Technology, Vol.26, pp.1165-1174, 1992.
Tay, J.H., and W.K. Yip, “Sludge Ash as Lightweight Concrete Material,” J. Environmental Engineering, ASCE, Vol.115, pp.56-64 ,1989.
SCRIVENER K L. Advanced Concrete Technology: constituent materials [M]. Oxford: Elsevier, 2003.
Xu Linglin, Wang Peiming, Zhang Guofang and Geert De Schutter (UGent), “Mechanism of calcium sulfate variety on strength of portland cement-calcium aluminate cement blends”
JOURNAL OF THE CHINESE CERAMIC SOCIETY = GUISUANYAN XUEBAO. 41(11)., p.41-48, 2013.
Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci; 6(5):6–9., 2010.
LIU Guanghua, ZHANG Jinsheng. Durability of calcium aluminate cement and Portland cement blends [C]// The 2nd conference on the production and application of Chinese dry-mix mortar used in building, Beijing: 83–88., 2006 (in Chinese).

S.N. Ghosh, ”CEMENT AND CONCRETE SCIENCE AND TECHNOLOGY, ” Thomas Telford, india, pp. 263-267, 1991.
S.U. Muzhen, WANG Yanmou, ZHANG Liang. “Calcium sulfoaluminate cement[M].” Beijing, Beijing University of Technology Press, 1999(in Chinese).
電子全文 電子全文(網際網路公開日期:20211231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔