(3.80.6.131) 您好!臺灣時間:2021/05/14 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬薇涵
研究生(外文):Wei-Han Ma
論文名稱:以多元衛星影像監測青藏高原湖泊長期水量變化
論文名稱(外文):Decadal Water Volume Variability of Lakes on Tibetan Plateau Estimated by Multi-Satellite Data
指導教授:曾國欣曾國欣引用關係
指導教授(外文):Kuo-Hsin Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:71
中文關鍵詞:青藏高原測高衛星
外文關鍵詞:Tibetan PlateauICESatSentinel-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
青藏高原上坐落著眾多冰河與湖泊,由於地勢高聳、環境險峻且人煙稀少,故在過往研究中曾被證實能提早反映氣候變遷。過去幾十年來,隨著溫度升高以及降水和蒸發散的改變,這些高山湖泊的水位也與此呈現高度正相關之震盪,因此,透過監測青藏高原的湖水位變化能夠了解氣候變遷對環境造成的影響。由於現地資料取得不易,從1980年代開始,衛星遙測技術的應用便成了資料蒐集的良好工具,然而,目前多半研究都著重在湖泊面積的變化,亦或是短期的湖水位監測,因此,本研究希望能夠利用Landsat影像和SRTM數值高程模型的結合,對青藏高原上所有面積大於10平方公里的湖泊進行長達30年的湖水位監測。
本研究方法主要辨識各張衛星影像中湖泊邊界並將其和SRTM數值高程模型套和進而估算水位高程,如此便能建立出長時間序列來觀測季節性以及年際水位變化,我們更計算了從1989到2019年湖泊的面積及水量變化,本研究總共完成了385口湖泊並將結果和ICESat雷射測高衛星以及Sentinel-3雷達測高衛星做比較,根據資料點介於五天之內的數據結果顯示,兩者之標準差為0.6公尺,相關係數約為0.6,結果顯示,從1989到2019年間青藏高原上湖泊的總體水量約增加了216 (Gt),此外,如同過往研究所呈現,青藏高原湖泊的年際水位變化和溫度、降水以及蒸發量息息相關,且有空間上區域分佈的特徵。
Alpine lakes on the Tibetan Plateau (TP) are the indicators of global climate change as their altitude is sensitive to the atmospheric forcing. In the last four decades, hundreds of lakes experienced a strong spatiotemporal variability along with the rising temperature, changing precipitation, and faster evaporation as revealed by the in-situ record. Lake level and water volume are thus a good proxy to identify environmental effects of the climate change. Due to the remoteness and wideness, satellite remote sensing has become the primary choice for data collection since the 1980s. However, most of hydrological evidences so far only revealed either the change of lake extent or short-term water level variation using limited sensors. Therefore, this study aims to build a historical water level time series in a time span of 30 years, for lakes larger than 10 km2 on TP using satellite optical images and SRTM digital elevation model (DEM).
The Thematic Imagery Altimetry System (TIAS) approach is used to identify the boundary of water bodies in each image and co-register with SRTM to estimate lake level through hypsometry. Hence, a multidecadal time series can be formed to observe the change of hydrological regimes from seasonal to decadal epochs. We also calculate the lake area/volume variation between 1989 and 2019. A total of 385 lakes are analyzed and compared with ICESat laser altimetry in 2003–2009 and Sentinel-3 radar altimetry from 2016 till now. The standard deviation between TIAS and the altimetry satellites (ICESat and Sentienl-3) equals to 0.6 m and the correlation coefficient is 0.6 while matching the temporally coincident (<5 days) water levels. The result shows that the overall lake volume from 1989 to 2019 increase about 216 Gt. Besides, the interannual variability of lakes over TP are associated with temperature and precipitation rate in different geographical regions, as mentioned in previous studies.
摘要 i
Abstract iii
Chapter 1 Introduction 1
1.1 Background of the Tibetan Plateau 1
1.2 Objective of This Study 2
1.3 Study area 4
1.4 Related work 7
1.5 Structure of This Study 11
Chapter 2 Data and Methodology 12
2.1 Preprocessing of Landsat Imagery 12
2.2 Water Delineation from Multispectral Image 17
2.3 Transformation from Water Area to Water Level 21
2.4 Radar Altimetry 25
2.5 ICESat Laser Altimetry 29
Chapter 3 Results 30
3.1 Validation of Lake Surface Height Estimates 30
3.2 Lake Variation in Southern Region 31
3.3 Lake Variation in North-Eastern Region 35
3.4 Lake Variation in Central Region 39
Chapter 4 Discussions 47
Chapter 5 Conclusions 52
References 53
Bao, P., Zhang, L., & Wu, X. (2005). Canny edge detection enhancement by scale multiplication. IEEE transactions on pattern analysis and machine intelligence, 27(9), 1485-1490.
Bhat, F. A., Yousuf, A. R., Aftab, A., Arshid, J., Mahdi, M. D., & Balkhi, M. H. (2011). Ecology and biodiversity in Pangong Tso (lake) and its inlet stream in Ladakh, India. Int. J. Biodivers. Conserv, 3(10), 501-511.
Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
Chang, C. P., Ho, H. P., Horng, C. S., Hsu, Y. C., & Tan, X. B. (2017, December). Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau. In AGU Fall Meeting Abstracts.
Che, T., Li, X., & Jin, R. (2009). Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data. Chinese Science Bulletin, 54(13), 2294-2299.
Chen, J., Wang Y. F., Zheng, J. J., Cao L. G. The changes in the water volume of Ayakekumu Lake based on satellite remote sensing data. Journal of Natural Resources, 2019,34(6), 1331-1344. (in Chinese)
Duo, B. I. A. N., Baciren, B. I. A. N., Ba, L. A., Caiyun, W. A. N. G., & Tao, C. H. E. N. (2010). The response of water level of Selin Co to climate change during 1975–2008. Acta Geographica Sinica, 65(3), 313-319. (in Chinese)
Duo, C., Qiong, P., & Dui, W. (2012). Water level variations of Yamzho Yumco Lake in Tibet and the main driving forces. Journal of Mountain Science, 30(2), 239-247. (in Chinese)
Fang, Y., Cheng, W., Zhang, Y., Wang, N., Zhao, S., Zhou, C., ... & Bao, A. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences, 26(4), 415-438.
Förste, C., Bruinsma, S. L., Shako, R., Abrikosov, O., Flechtner, F., Marty, J. C., ... & Biancale, R. (2012, April). A new release of EIGEN-6: The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. In EGU General Assembly Conference Abstracts (Vol. 14, p. 2821).
Han-Qiu, X. U. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of remote sensing, 5, 589-595.
Hwang, C., Cheng, Y. S., Yang, W. H., Zhang, G., Huang, Y. R., Shen, W. B., & Pan, Y. (2019). Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 altimeters. Terr. Atmos. Ocean Sci, 30, 1-18.
Jiang, L., Nielsen, K., Andersen, O. B., & Bauer-Gottwein, P. (2017). Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544, 109-124.
Kuang, X., & Jiao, J. J. (2016). Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 121(8), 3979-4007.
Kwok, R., Zwally, H. J., & Yi, D. (2004). ICESat observations of Arctic sea ice: A first look. Geophysical Research Letters, 31(16).
La, B., Bian, D., & Chen, T. (2012). Possible causes of area change of lake Tangra Yumco, Tibet based on TM images. Meteorological Science and Technology, 40(4), 685-688. (in Chinese)
La, B., Bian, D., CI, Z., Laba, Zhuo. Ma., & Chen, T. (2012) Study on the Change of Lake Area and Its Causes in the Mapangyong Co Basin in Tibet. Arid Zone Reasearch, 29(6): 992-996.(in Chinese)
Lei, Y., Yao, T., Bird, B. W., Yang, K., Zhai, J., & Sheng, Y. (2013). Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 483, 61-67.
Lei, Y., Yao, T., Yang, K., Bird, B. W., Tian, L., Zhang, X., ... & Wang, L. (2018). An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas. Journal of Hydrology, 562, 599-608.
Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., ... & Wang, Y. M. (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96.
Li, X., Long, D., Huang, Q., Han, P., Zhao, F., & Wada, Y. (2019). High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data Discussions, 11(4), 1603-1627.
Liu, B., Li, L., Feng, Q., Xie, H., Liang, T., Hou, F., & Ren, J. (2016). Outburst flooding of the moraine-dammed Zhuonai Lake on Tibetan plateau: causes and impacts. IEEE Geoscience and Remote Sensing Letters, 13(4), 570-574.
Liu, J. G. (2000). Evaluation of Landsat-7 ETM+ panchromatic band for image fusion with multispectral bands. Natural Resources Research, 9(4), 269-276.
Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14), 1729-1742.
Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., ... & Li, S. (2011). China’s lakes at present: Number, area and spatial distribution. Science China Earth Sciences, 54(2), 283-289.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4).
Phan, V. H., Lindenbergh, R. C., & Menenti, M. (2013). Geometric dependency of Tibetan lakes on glacial runoff. Hydrology and Earth System Sciences, 17(10), 4061.
Qiu, J. (2008). China: the third pole. Nature, 454(7203), 393-396.
Sentinel-3 SRAL Marine User Handbook
Song, C., Huang, B., & Ke, L. (2013). Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 135, 25-35.
Song, C., Huang, B., Richards, K., Ke, L., & Hien Phan, V. (2014). Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resources Research, 50(4), 3170-3186.
Song, C., Ye, Q., & Cheng, X. (2015). Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science bulletin, 60(14), 1287-1297.
Srivastava, P., Bhambri, R., Kawishwar, P., & Dobhal, D. P. (2013). Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry. Journal of earth system science, 122(6), 1533-1543.
Tang, L., Duan, X., Kong, F., Zhang, F., Zheng, Y., Li, Z., ... & Hu, S. (2018). Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Scientific reports, 8(1), 7331.
Tseng, K. H., Shum, C. K., Kim, J. W., Wang, X., Zhu, K., & Cheng, X. (2016). Integrating Landsat imageries and digital elevation models to infer water level change in Hoover Dam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1696-1709.
Wan, W., Long, D., Hong, Y., Ma, Y., Yuan, Y., Xiao, P., ... & Gu, X. (2016). A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific data, 3(1), 1-13.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., & Chen, Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79-91.
Yao, Z., Liu, J., Huang, H. Q., Song, X., Dong, X., & Liu, X. (2009). Characteristics of isotope in precipitation, river water and lake water in the Manasarovar basin of Qinghai–Tibet Plateau. Environmental geology, 57(3), 551-556.
You, Q., Min, J., Lin, H., Pepin, N., Sillanpää, M., & Kang, S. (2015). Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 120(9), 3610-3621.
Zhang, G., Xie, H., Kang, S., Yi, D., & Ackley, S. F. (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 115(7), 1733-1742.
Zhang, X., Yang, D., Zhou, G., Liu, C., & Zhang, J. (1996). Model expectation of impacts of global climate change on biomes of the Tibetan Plateau. In Climate change and plants in East Asia (pp. 25-38). Springer, Tokyo.
Zhang, Y. L., Li, B. Y., & Zheng, D. (2002). Datasets of the boundary and area of the Tibetan Plateau. Global Change Research Data Publishing and Repository, 2014. DOI: 10.3974/geodb. 2014.01. 12. v1.
Zhang, Y., Yao, T., & Ma, Y. (2011). Climatic changes have led to significant expansion of endorheic lakes in Xizang (Tibet) since 1995. Sci. Cold Arid Reg, 3(6), 0463-0467.
Zhou, J., Wang, L., Zhang, Y., Guo, Y., Li, X., & Liu, W. (2015). Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling. Water Resources Research, 51(10), 8060-8086
Zhu, L., Xie, M., & Wu, Y. (2010). Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chinese Science Bulletin, 55(13), 1294-1303.
電子全文 電子全文(網際網路公開日期:20250702)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔