(34.226.234.102) 您好!臺灣時間:2021/05/12 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳文研
研究生(外文):Van-Nhiem Tran
論文名稱(外文):Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
指導教授:鐘志忠
指導教授(外文):Chi-Chung Chung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:197
中文關鍵詞:Time domain reflectometryshear deformation quantificationcentrifuge modelling.
外文關鍵詞:Time domain reflectometryshear deformation quantificationcentrifuge modelling.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
邊坡災害是在邊坡上土壤或岩石崩壞的現象。監測邊坡災害一直都是棘手的問題,尤其
是在山區,由於復雜的地形和地理環境,難以安裝監測系統。邊坡監測技術不僅包括地
面衛星圖像分析和全球定位系統(GPS),還包括諸如傾斜儀和時域反射法(TDR)等監
測方法。儘管上述的方法可以提供邊坡大面積的監測範圍,但是在使用 GPS 時仍具有侷
限性,例如追求更高的精度,又或者取得目標地之滑坡平面的深度。另一方面,TDR 作
為地下邊坡監測預警系統,已經成功驗證在不同現地測試下的可行性。而 TDR 可涉及到
監測連續的剪切變形。有研究者在實驗室內進行剪切和壓痕實試,且對於 TDR 反射係數
與剪切位移進行了定量分析,但是 TDR 仍面臨著一些問題,由於上覆壓力對於反射係數
仍相對不敏感,所以反射係數對剪切位移的精確定量仍是一項挑戰。為了解決上述問題,
本研究提出將離心機逆斷層破壞模型與 TDR 結合來模擬纜線剪切變形的方法。為了符合
離心試驗的縮放定律,對於小直徑柔性同軸電纜進行第一次的修改,並與直接剪力實驗
進行評估。然後在不同重力的離心機模型中,通過增加 N 倍的重力場,與 1/N 比例的實驗
模型來進行研究。本研究執行三個部分,第一,實驗室直接剪力實驗表明,改良後的同
軸電纜在 0.5mm 的極小剪切位移下,靈敏度有顯著地提高。第二,在離心機物理實驗中,
通過具有剪切帶和較大剪切位移的逆斷層破壞模型成生剪切平面,進而得到 TDR 波形與
剪切變形之間的相關性。基於上述的實驗,包括尖峰反射係數和區域積分以及相應的剪
切位移,對其進行進一步的定量分析。而在最後發表了 TDR 離心機模型建模之指南。
Landslide disaster is a result of the failure of the soil or rock slope. Landslide monitoring is the
most critical challenging issue especially in the mountain where is difficult for installation of the
monitoring system because of complex topography and geography. Landslide monitoring
techniques include not only satellite images analysis and Global position system (GPS) for the
land surface target, but also the underground methods such as inclinometer and Time Domain
Reflectometry (TDR). Despite providing the early warning with a continuous displacement of the
slope surface, GPS applied in landslide monitoring still exists a limitation on indicating higher
accuracy and localizing the shear plane in depth. On the other hand, TDR as a warning system in
landslide monitoring underground has been validated with different field studies in slope
monitoring. TDR involves continuously detecting shear surface and exactly identifying shear
deformity. Although previous studies of laboratory shear and indentation tests have quantified
shear displacement based on the TDR reflection coefficient, TDR suffers challenges for precise
quantification of shear displacement from the reflection coefficient influenced by several factors,
and it relatively insensitive due to artificial overburden pressure in the laboratory test.
To address the abovementioned problems, this study proposed TDR integrated with centrifuge
reverse fault modeling to simulate sliding at depth. To fit the centrifuge test scale, a flexible and
small diameter coaxial cable was first modified and evaluated with the simple direct shear test.
Then the reverse fault modeling was used to simulate the shear plane in the centrifuge modelling at the different earth gravity level. The prototype model can investigate through the 1/N scale
model by enhancing the N time level earth gravity field. As testing results, this study carries out
three main major parts. First, the laboratory direct shear testing showed the modified coaxial cable
has dramatic improvement in the sensitivity at very small-scale shear displacement at 0.5 mm.
Second, in the centrifuge physical model, the shear plane can be generated by reverse fault
modeling with shear bandwidth and large shear displacement, and the quantification of the
correlation between the TDR waveform and shear deformation was accordingly revealed. The
quantification was further analyzed based on two methods including the peak reflection and the
integration area with corresponding shear deformation. Finally, general guidelines for TDR
landslide modeling in centrifuge was suggested in this study.
Abstract I
LIST OF TABLES VIII
LIST OF FIGURES IX
1. Introduction 1
1.1. Research Motivation . 1
1.2. Study Objectives 2
1.3. Research Flow Chart 3
2. Literature Review 5
2.1. TDR Principle 5
2.1.1. TDR Reflection Coefficient and Impedance of the Transmission Line ......... 7
2.2. TDR Time Travel Analysis and TDR Accuracy Influence Factors .................... 11
2.2.1. Apparent Dielectric Constant Ka 11
2.2.2. TDR Resolution Factors 11
2.2.3. TDR Accuracy Influence Factors 14
2.3. TDR Applications 14
2.3.1. TDR Dielectric Type 14
2.3.2. Interface Type 15
2.3.3. Crimp Type 15
2.4. Quantification of Shear Displacement 18
2.5. Centrifuge Physical Modeling 23
3. TDR Coaxial Cable Sensitivity Tests, and TDR Signal Processing ..................... 30
3.1. Introduction Coaxial Cable 30
3.2. Coaxial Cable Sensitivity Testing 30
3.3. Signal Processing 62
3.3.1. TDR Signal and Signal Processing Method for Removing Noise of TDR
Signal 62
VI
3.3.2. Low Pass Filter Signal Processing in TDR Signal 63
3.3.3. Wavelet Signal Processing in TDR Signal 66
3.3.4. Comparison between Low Pass Filter and Wavelet Filter in TDR Signal
Processing 72
4. Development of TDR Centrifuge Modelling 78
4.1. Testing Apparatus Physical Model 78
4.1.1. NCU Centrifuge Geotechnical Centrifuge Facilities.78
4.1.2. Aluminum Container 78
4.1.3. Traveling Pluviation Equipment 79
4.1.4. Transducers in Centrifuge 79
4.1.5. Data Acquisition System 84
4.2. Centrifuge Model Embankment Test 87
4.2.1. Model Design 87
4.2.2. Model Construction 87
4.2.3. Centrifuge Testing Procedure. 88
4.2.4. Testing Result and Discussion 92
4.3. Preliminary Test of Reverse Fault Model with 1g Gravity Condition ................ 98
4.3.1. Model Design 98
4.3.2. Model Construction 98
4.3.3. Process of Centrifuge Test 99
4.3.4. Testing Results 103
4.4. Reverse Fault Model with 40g Gravity Condition 109
4.4.1. Model Design 109
4.4.2. Model Construction 117
4.4.3. Process of Centrifuge Test 118
4.4.4. Testing Result and Discussion 118
4.5. Reverse Fault Model with 55 g Gravity Condition 133
4.5.1. Model Design 133
VII
4.5.2. Model Construction .134
4.5.3. Process of Centrifuge Test 138
4.5.4. Testing Results and Discussion 138
4.6. Quantification Shear Displacement Correlated Reflection Coefficient ............ 152
4.6.1. Quantification of Direct Shear Test 155
4.6.2. Quantification of Centrifuge Model 159
4.6.3. Comparison Between Laboratory Direct Shear Test and 55g Centrifuge
Reverse Fault Test. 166
4.7. The Evaluation of TDR Sensitivity by Embedding Along with Inclinometer in
One Borehole 168
5. Conclusions and Suggestions 169
5.1. Conclusions 169
5.2. Suggestions 170
6. References 172
6. References

[1] Lin, C.-P., Tang, S.-H., Lin, W.-C., and Chung, C.-C. (2009). Quantification of cable deformation with TDR -- implications to localized shear deformation monitoring. Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No. 1.
[2] Lin Y.S., Chen, H.I., Ho, S.H., Chen, J.Y., Su, M.B. (2019), Applying time domain reflectometry to quantification of slope deformation by shear failure in a landslide. Environmental Earth Sciences, 78-123.
[3] Singer, J., Thuro, K., and Sambeth, U. (2006), Development of a Continuous 3D-Monitoring System for Unstable Slopes using TDR. The Geological Society London 2006, IAEG2006 Paper number 495.
[4] Chung, C.-C., Lin, C.-P., (2019). Development of advanced TDR landslide monitoring as an early warning system validated by field implementations, Submitted to Engineering Geology (Revision).
[5] Thuro, k., Singer, J. (2010). New landslide monitoring techniques developments and experiences of the alpewas project, Journal of Applied Geodesy, 4 60-60.
[6] Xu, Z., Pierce, C.E. (2013). TDR-based shear deformation measuring system for slope failure modeling, Advanced Materials Research, 639-640. pp1155-1161.
[7] Chung, C.C. (2008). Improved Time Domain Reflectometry Measurement and Its Application to Characterization of Soil-Water Mixtures, Ph.D. thesis, National Chiao Tung University, Taiwan.
[8] Hung, W.Y. (2008). Breaking Failure Behavior and Internal Stability Analysis of Geosynthetic Reinforced Earth Walls, Ph.D. thesis, National Central University Taiwan. Retrieve from https://www.researchgate.net/publication/288916727s.
[9] Downding, C.H., O’Connor K.M. (2000). Comparision of TDR and inclinometers for slope Monitoring GeoDenver 2000.
[10] Dowding, C. H., Pierce, C. E. (1994). Measurement of localized failure planes in soil with time domain reflectometry. In Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, Illinois, Sept (pp. 7-9).
[11] Georgia Tech CDFI. (2010). Handbook for Time Domain Reflectometry. National Electric Energy Testing, Research & Applications Center.
[12] Tran, M.C. (2017). Centrifuge modelling on failure behaviors of sandy slope caused by gravity, rainfall. M.S Thesis, National Central University, Taiwan.
[13] Gopal M., (2014). Centrifuge modelling for civil engineers, Taylor & Francis Group, LLC

[14] Baziar, M.H, Nabizadeh, A, Lee,C.J, and Hung, W.Y. (2014). Centrifuge modelling of interaction between reverse faulting and tunnel. Soil Dynamic and Earthquake Engineering 65 151-164.
[15] Dowding, C. H., Su, M. B., & O'Connors, K. (1988). Principles of time domain reflectometometry applied to measurement of rock mass deformation. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 5, pp. 287-297). Pergamon.
[16] Sorta, A.R. (2015) Centrifuge Modelling of Oil Sand Tailings Consolidation, Ph.D thesis, University of Alberta, Canada. Retrieved from https://era.library.ualberta.ca/items/25ffbb10-2761-4cb2-923a-8025c47f232d.
[17] Anritsu Company, (2013). Time Domain Measurements Using Vector Network Analyzers (Application Report No. MS4640). Retrieved from Anritsu website: https://dl.cdn-anritsu.com/en-us/test-measurement/files/ApplicationNotes/Application-Note/11410-00722A.pdf.
[18] Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3), 574-582.
[19] Feng, W., Lin, C.P., Deschamps, R. J., and Drnevich, V. P. (1999). Theoretical model of a multisection time domain reflectometry measurement system, Water Resources Research, Vol. 35, No. 8, pp. 2321-2331.
[20] Dowding, C. H., Dussud, M. L., Kane, W. F., and O’Connor, K. M., (2003). Monitoring deformation in rock and soil with TDR sensor cables, Geotechnical News, pp. 51-59.
[21] Cambridge Engineering Department Materials Databook. (2003).
Retrieved from: http://wwwmdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf

[22] Cantrell, J., Rohde, S., Damiani. (2017). Experimental characterization of the mechanical properties of 3D-Printed ABS and Polycarbonate parts., Advancement of Optical Methods in Experimental Mechanics, Volume 3
Retrieved from: https://link.springer.com/book/10.1007/978-3-319-41600-7
[23] Lawday, G., Ireland, D., Edlund G. (2008). A Signal Integrity Engineer's Companion: Real-Time Test and Measurement and design simulation, Prentice Hall express
電子全文 電子全文(網際網路公開日期:20220731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔