(3.238.173.209) 您好!臺灣時間:2021/05/17 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:Truong Minh Tri
研究生(外文):TRUONG MINH TRI
論文名稱:2009-2018年台灣市區與郊區之長期大氣汞濕沉降測量
論文名稱(外文):Long-term atmospheric mercury wet deposition measurements at urban and suburban sites in Taiwan in 2009-2018
指導教授:許桂榮
指導教授(外文):Guey-Rong Sheu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:101
中文關鍵詞:汞濕沉降對流降雨氣態氧化汞移除年際趨勢
外文關鍵詞:wet Hg depositionconvective rainfallGOM scavenginginter-annual trend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究分析了2009至2018年間中壢、台中與高雄之汞濕沈降資料。三處測站位於台灣西部,周圍有不同程度的人為與工業活動。因此,本研究主要目標為描述各測站的汞濕沈降時間與空間變化分布,以及研討天氣型態和雨水化學成分和汞濕沈降的機制。於此10年期間,台中站(14.2 ng L-1, n = 284)與高雄站(14.2 ng L-1, n = 233)雨水汞體積權重平均濃度比中壢站(11.4 ng L-1, n = 362)雨水汞體積權重平均濃度高25% (p < 0.01),而三處測站汞濕沈降年沈降量介於22.4至24.6 ug m-2 yr-1,各測站年沈降量並無顯著差異(p > 0.1)。使用Mann-Kendall和Thiel-Sen方法探討雨水汞濃度和汞濕沈降量變化趨勢,中壢站雨水汞濃度變化趨勢為-0.032 ng L-1 month-1或-3.4% yr-1(p < 0.01)、汞濕沈降量變化趨勢-8.1 ng m-2 month-1或-0.43 % yr-1 (p < 0.01),但台中站和高雄站變化趨勢並不顯著(p > 0.1)。依季節分析,三處測站都在夏季和秋季觀察到較高的雨水汞濃度,夏季汞濕沈降量最高。降雨量和降雨類型為控制汞濕沈降量主要機制,汞濕沈降量和降雨量的相關性(R2 = 0.75–0.82, p < 0.01)高於和雨水汞濃度之相關性(R2 = 0.18–0.32, p < 0.01)。降雨類型也導致雨水汞濃度和汞濕沈降量之空間變化,午後雷雨型降雨增加雨水汞濃度約14至42%,西南季風因帶來更多的對流型降雨,與東北季風相比有更高的汞濕沈降量。主成分分析結果顯示自對流層移除的氣態氧化汞可能為三處測站的雨水汞主要來源,經由個案分析更進一步指出一般午後雷雨事件反映出雨水汞濃度,意味著對流活動移除自由對流層中氣態氧化汞的重要性。
In this study, rainwater mercury (Hg) concentration and wet Hg deposition flux data of Jhongli, Taichung and Kaohsiung in 2009–2018 were analyzed. Located along the western side of Taiwan, these surface sites were surrounded by anthropogenic and industrial activities in various degrees. Therefore, characterization of temporal and spatial variations in wet Hg deposition at these suburban and urban sites was the major research objective of this study. In addition, the associated weather types and co-collected rainwater chemical components were also studied to explore the mechanisms governing wet Hg deposition at these sites. Over the 10-year period, the volume-weighted mean (VWM) Hg concentrations at Taichung (14.2 ng L-1, n = 284) and Kaohsiung (14.2 ng L-1, n = 233) were 25% higher (p < 0.01) than at Jhongli (11.4 ng L-1, n = 362) while there was no significant difference in annual deposition fluxes among 3 sites (22.4–24.6 ug m-2 yr-1, p > 0.1). Mann-Kendall test and Thiel-Sen slope were employed to investigate the trends in rainwater Hg concentration and wet Hg deposition. Significant decreasing trends in Hg concentration (-0.032 ng L-1 month-1 or -3.4% yr-1, p < 0.01) and Hg flux (-8.1 ng m-2 month-1 or -0.43 % yr-1, p < 0.01) were observed at Jhongli, but not at Taichung (p > 0.1) and Kaohsiung (p > 0.1). Seasonally, higher summer and fall concentrations were observed at all sites, with peak Hg deposition flux in summer. Rainfall depth and rainfall types were found to be major factors governing wet Hg deposition. Wet Hg fluxes showed better correlation with rainfall (R2 = 0.75–0.82, p < 0.01) than rainwater Hg concentration (R2 = 0.18–0.32, p < 0.01), demonstrating the importance of rainfall in governing wet Hg fluxes at these sites. Rainfall type also contributed to the spatial variation in rainwater Hg concentration and wet Hg deposition flux among these 3 sites. Afternoon thunderstorms enhanced the rainwater Hg concentration by 14–42%. Southwest monsoon brought more convective rainfall and higher wet Hg deposition flux than the northeast monsoon. Results of principle component analysis (PCA) result indicated gaseous oxidized mercury (GOM) scavenging from the free troposphere could be the major source for rainwater Hg at all sites. A case study further examined the rainwater Hg concentration response from a typical afternoon thunderstorm event and suggested the importance of convective activity in scavenging GOM from higher altitudes.
Abstract II
Acknowledgement IV
List of Tables VIII
List of Figures X
Chapter 1. Introduction and Literature review 1
1.1 Introduction of mercury 1
1.1.2 Toxicology of mercury 2
1.1.3 Mercury emission sources 3
1.2 Wet Hg deposition 5
1.2.1 Wet Hg deposition characteristics 5
1.2.2 Long-term wet Hg deposition trend 7
1.2.3 Mechanisms and their impacts on Hg wet deposition 10
1.2.3.1 Dilution effect 10
1.2.3.2 Rainfall types 11
1.2.3.3 Atmospheric chemistry 13
Chapter 2. Sites and Method 16
2.1 Site description 16
2.1.1 Jhongli (suburban site) 17
2.1.2 Taichung (urban site) 18
2.1.3 Kaohsiung (urban site) 19
2.2 Rainwater sampling and analysis 20
2.2.1 Rainfall sampling and retrieval 20
2.2.2 Rainwater total Hg analysis 21
2.2.3 Ancillary data 22
2.2.3.1 Heavy metal analysis 22
2.2.3.2 Major ion analysis 22
2.2.3.3 Rainfall data 23
2.3 Wet deposition calculation method 24
2.3.1. Volume-weighted mean (VWM) Hg concentration 24
2.3.2. Hg wet deposition flux 24
2.5 Trend analysis 27
2.6 Principle component analysis (PCA) 28
Chapter 3. Results and Discussions 29
3.1 Basic characteristics 29
3.1.1 Major ions in rainwater 29
3.1.2 Heavy metals and Hg in rainwater 30
3.1.2.1 Heavy metals basic statistics at Jhongli site 30
3.1.2.2 Wet Hg deposition basic statistics 34
3.2 Seasonal wet Hg deposition patterns 40
3.2.1 Jhongli 40
3.2.2 Taichung 41
3.2.3 Kaohsiung 41
3.3 Inter-annual variation and trend analysis 42
3.3.1 Yearly variation in wet Hg deposition 42
3.3.1.1 Rainwater Hg concentration 42
3.3.1.2 Rainfall and wet Hg deposition flux 44
3.3.2 Inter-annual trend in Hg wet deposition parameters 45
3.4 Weather classification 47
3.4.1 Basic statistics 48
3.4.2 Jhongli 50
3.4.3 Taichung 52
3.4.4 Kaohsiung 55
3.5 Impact of non-meteorological processes on Hg wet deposition 57
3.5.1 Local and regional sources 59
3.5.2 Long-range transport 64
3.6 Source apportionment using principal component analysis 65
3.6.1 Jhongli 65
3.6.2 Taichung and Kaohsiung 67
3.7 Case studies 70
Chapter 4. Conclusion 80
References 82
Ahn, M.C., Yi, S.M., Holsen, T. M., Han, Y.J., 2011. Mercury wet deposition in rural Korea: concentrations and fluxes. J. Environ. Monit. 13, 2748-2754.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G, Subir, M., 2015. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions. Chem. Rev. 115, 3760-3802.
Brunke, E.G., Walters, C., Mkololo, T., Martin, L., Labuschagne, C., Silwana, B., Somerset, V., 2016. Mercury in the atmosphere and in rainwater at Cape Point, South Africa. Atmos. Environ. 125, 24-32.
Chan, C. K., Yao, X., 2008. Air pollution in mega cities in China. Atmos. Environ. 42, 1-42.
Chen, C.S., Chen, Y.L., 2003. The rainfall characteristics of Taiwan. Mon. Wea. Rev. 131, 1323-1341.
Cheng, M.C., You, C.F., 2010. Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. J. Geochem. Explor. 105, 106-116.
Cheng, M.C., You, C.F., Lin, F.J., Huang, K.F., Chung, C.H., 2011. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan. Atmos. Environ. 45, 1919-1928.
Cole, A., Steffen, A., Eckley, C., Narayan, J., Pilote, M., Tordon, R., Branfireun, B., 2014. A survey of mercury in air and precipitation across Canada: patterns and trends. Atmosphere 5, 635-668.
Do, T.T.L, 2018. Characterization of wintertime precipitation chemistry at sites in the northern Taiwan. Master's thesis
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967-4983.
Ebinghaus, R., Jennings, S., Schroeder, W., Berg, T., Donaghy, T., Guentzel, J., Landing, W., 1999. International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmos. Environ. 33, 3063-3073.
Fan, Y.C., 2011. Temporal and Spatial Distribution of Mercury and Heavy Metals in Wet Deposition in Taiwan. Master's thesis
Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., Feng, X., 2016. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmos. Chem. Phys. 16, 11547-11562.
Gilbert, R. O., 1987. Statistical methods for environmental pollution monitoring. John Wiley & Sons.
Goldberg, E. D., Koide, M., Schmitt, R., Smith, R. H., 1963. Rare‐Earth distributions in the marine environment. J. Geophys. Res. 68, 4209-4217.
Gratz, L. E., Keeler, G. J., Miller, E. K., 2009. Long-term relationships between mercury wet deposition and meteorology. Atmos. Environ. 43, 6218-6229.
Holmes, C. D., Krishnamurthy, N. P., Caffrey, J. M., Landing, W. M., Edgerton, E. S., Knapp, K. R., Nair, U. S., 2016. Thunderstorms increase mercury wet deposition. Environ. Sci. Technol. 50, 9343-9350.
Hopke, P. K., 2015. It is time to drop principal components analysis as a “receptor model”. J. Atmos. Chem., 72, 127-128.
Hsu, S.-C., Liu, S. C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Lung, S.-C. C., Tu, J.-Y., 2005. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Sci. Total. Environ. 347, 111-121.
Hu, G.-P., Balasubramanian, R., 2003. Wet deposition of trace metals in Singapore. Water Air Soil Poll. 144, 285-300.
Huang, K., Zhuang, G., Xu, C., Wang, Y., & Tang, A., 2008. The chemistry of the severe acidic precipitation in Shanghai, China. Atmos. Res. 89, 149-160.
Huang, W.-R., Chang, Y.-H., & Huang, P.-H., 2019. Relationship between the Interannual Variations of Summer Convective Afternoon Rainfall Activity in Taiwan and SSTA (Niño3. 4) during 1961–2012: Characteristics and Mechanisms. Sci. Rep. 9, 1-12.
Huang, W. R., Chang, Y. H., 2018. Characteristics and mechanisms of the diurnal variation of winter precipitation in Taiwan. Int. J. Climatol. 38, 3058-3068.
Huang, W. R., Chang, Y. H., Hsu, H. H., Cheng, C. T., Tu, C. Y., 2016. Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res. Atmos. 121, 13,973-913,988.
Huang, W. R., & Chen, K. C., 2015. Trends in pre‐summer frontal and diurnal rainfall activities during 1982–2012 over Taiwan and Southeast China: characteristics and possible causes. Int. J. Climatol. 35, 2608-2619.
Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S.-i., Pan, Y., Wang, Y., 2018. A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia. Atmos. Chem. Phys. 18, 2835-2852.
Kaulfus, A. S., Nair, U., Holmes, C. D., Landing, W. M., 2017. Mercury wet scavenging and deposition differences by precipitation type. Environ. Sci. Technol. 51, 2628-2634.
Keeler, G. J., Gratz, L. E., Al-Wali, K., 2005. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14, 71-83.
Keene, W. C., Pszenny, A. A., Galloway, J. N., & Hawley, M. E., 1986. Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. Atmos. 91, 6647-6658.
Kim, J.-E., Han, Y.-J., Kim, P.-R., Holsen, T. M., 2012. Factors influencing atmospheric wet deposition of trace elements in rural Korea. Atmos. Res. 116, 185-194.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., & Muramatsu, T. 1998. Lessons from Minamata mercury pollution, Japan-after a continuous 22 years of observation. Water Sci.Technol.,38, 187.
Kozin, L. F., Hansen, S. C., 2013. Mercury handbook: chemistry, applications and environmental impact. Royal Society of Chemistry.
Landis, M. S., Keeler, G. J., 1997. Critical evaluation of a modified automatic wet-only precipitation collector for mercury and trace element determinations. Environ. Sci. Technol. 31, 2610-2615.
Landis, M. S., Stevens, R. K., Schaedlich, F., Prestbo, E. M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 36, 3000-3009.
Lei, T.L, 2016. Temporal and spatial distribution of mercury concentration in rainwater and mercury wet deposition flux in Northern Taiwan. Master's thesis
Lin, C.-J., Pehkonen, S. O., 1999. The chemistry of atmospheric mercury: a review. Atmos. Environ. 33, 2067-2079.
Lin, C.Y., Liu, S. C., Chou, C. C.K., Huang, S.J., Liu, C.M., Kuo, C.H., Young, C.Y., 2005. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ. 39, 6066-6076.
Lin, M., Jeng, F., 2000. Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan—Typhoon Herb. Eng. Geol. 58, 191-207.
Lin, N.H., Lee, H.M., Chang, M.B., 1999. Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis. Water Air Soil Poll. 113, 241-260.
Logar, M., Horvat, M., Falnoga, I., Stibilj, V., 2000. A methodological study of mercury speciation using Dogfish liver CRM (DOLT-2). Fresen. J. Anal. Chem. 366, 453-460.
Lyman, S. N., Jaffe, D. A., 2012. Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere. Nat. Geosci. 5, 114.
Mao, H., Ye, Z., Driscoll, C., 2017. Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000–2015. Atmos. Environ. 168, 90-100.
Mason, R. P., 2013. Trace metals in aquatic systems. John Wiley & Sons.
Mason, R. P., Sheu, G. R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochem. Cy. 16, 40-41-40-14.
Nair, U., Wu, Y., Holmes, C., Schure, A. T., Kallos, G., Walters, J., 2013. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms. Atmos. Chem. Phys. 13, 10143-10157.
Nguyen, D. L., Kim, J. Y., Shim, S.-G., Ghim, Y. S., Zhang, X.S., 2016. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environ. Pollut. 219, 262-274.
Nguyen, L. S. P., Sheu, G.R., 2019. Four-year Measurements of Wet Mercury Deposition at a Tropical Mountain Site in Central Taiwan. Aerosol Air Qual. Res. 19, 2043-2055.
Outridge, P. M., Mason, R., Wang, F., Guerrero, S., Heimbürger-Boavida, L., 2018. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466-11477.
Prestbo, E. M., Gay, D. A., 2009. Wet deposition of mercury in the US and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ. 43, 4223-4233.
Qin, C., Wang, Y., Peng, Y., Wang, D., 2016. Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmos. Environ. 142, 442-451.
Risch, M., Kenski, D., 2018. Spatial patterns and temporal changes in atmospheric-mercury deposition for the Midwestern USA, 2001–2016. Atmosphere 9, 29.
Risch, M. R., Gay, D. A., Fowler, K. K., Keeler, G. J., Backus, S. M., Blanchard, P.,Dvonch, J. T., 2012. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008. Environ. Pollut. 161, 261-271.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M., Dávalos, J. Z., Notario, R., Thackray, C. P., 2018. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nat. Commun. 9, 4796.
Sakata, M., Asakura, K., 2009. Factors contributing to seasonal variations in wet deposition fluxes of trace elements at sites along Japan Sea coast. Atmos. Environ. 43, 3867-3875.
Sakata, M., Marumoto, K., 2005. Wet and dry deposition fluxes of mercury in Japan. Atmos. Environ. 39, 3139-3146.
Schroeder, W. H., Munthe, J., 1998. Atmospheric mercury—an overview. Atmos. Environ. 32, 809-822.
Senda, M., Nishi, T., Takagi, N., Sugiyama, F., Kuzuha, Y., 2014. Fluctuation of ion components, trace metals, and Pb/Zn ratio in precipitation at Tsu city. J. Struct. Eng. 2, 249-268.
Seo, Y.S., Han, Y.J., Choi, H.D., Holsen, T. M., Yi, S.M., 2012. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmos. Environ. 49, 69-76.
Shah, V., Jaeglé, L., Gratz, L., Ambrose, J., Jaffe, D., Selin, N., Reeves, M., 2016. Origin of oxidized mercury in the summertime free troposphere over the southeastern US. Atmos. Chem. Phys. 16, 1511-1530.
Shanley, J. B., Engle, M. A., Scholl, M., Krabbenhoft, D. P., Brunette, R., Olson, M. L., Conroy, M. E., 2015. High mercury wet deposition at a “clean air” site in Puerto Rico. Environ. Sci. Technol. 49, 12474-12482.
Sheu, G.R., Lin, N.H., 2011. Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the northeast monsoon season. Atmos. Environ. 45, 4454-4462.
Sheu, G.R., Lin, N.H., 2013. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean. Atmos. Environ. 77, 474-481.
Sheu, G.R., Nguyen, L. S. P., Truong, M. T., Lin, D.W., 2019. Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events. Atmos. Environ. 214, 116827.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C.,Comero, S., 2017. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 17, 2689-2708.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., Landing, W. M., 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cy. 23.
Sundseth, K., Pacyna, J., Pacyna, E., Pirrone, N., Thorne, R., 2017. Global sources and pathways of mercury in the context of human health. Int. J. Env. Res. Pub. He. 14, 105.
UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and
Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland.
Weiss-Penzias, P. S., Gay, D. A., Brigham, M. E., Parsons, M. T., Gustin, M. S., ter Schure, A., 2016. Trends in mercury wet deposition and mercury air concentrations across the US and Canada. Sci. Total Environ. 568, 546-556.
Wright, L. P., Zhang, L., Marsik, F. J., 2016. Overview of mercury dry deposition, litterfall, and throughfall studies. Atmos. Chem. Phys. 16, 13399-13416.
Wu, Q., Wang, S., Li, G., Liang, S., Lin, C.J., Wang, Y.,Hao, J., 2016. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978–2014. Environ. Sci. Technol. 50, 13428-13435.
Ye, Z., Mao, H., Driscoll, C. T., Wang, Y., Zhang, Y., Jaeglé, L., 2018. Evaluation of CMAQ Coupled With a State‐of‐the‐Art Mercury Chemical Mechanism (CMAQ‐newHg‐Br). J. Adv. Model. Earth Sy. 10, 668-690.
Zhang, L., Lyman, S., Mao, H., Lin, C.-J., Gay, D. A., Wang, S.,Wania, F., 2017. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys. 17, 9133-9144.
Zhang, M., Wang, S., Wu, F., Yuan, X., Zhang, Y., 2007. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311-322.
Zhang, W., Sun, Q., Yang, X., 2018. Thermal effects on arsenic emissions during coal combustion process. Sci. Total Environ. 612, 582-589.
Zhou, H., Zhou, C., Hopke, P. K., Holsen, T. M. 2018. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Sci. Total Environ. 637, 943-953.
Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Han, Y., 2014. Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos. Chem. Phys. 14, 2233-2244
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文