(3.236.214.19) 您好!臺灣時間:2021/05/07 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李澤邑
研究生(外文):Tse-Yi Lee
論文名稱(外文):Changes of the Hadley Cell During the Last Four Decades
指導教授:余嘉裕余嘉裕引用關係嚴明鉦嚴明鉦引用關係
指導教授(外文):Jia-Yuh YuMing-Cheng Yen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:39
中文關鍵詞:哈德里胞聖嬰現象全球暖化
外文關鍵詞:Hadley CellEl Nino-Southern OscillationGlobal Warming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的研究中,全球暖化下的哈德里胞(Hadley Cell)變化在氣候模式以及再分析資料中相差不小。因此本研究使用最接近觀測以及最廣泛使用的再分析資料來源(ERA-Interim, ERA5, JRA-55, CFSR跟CFSRv2),研究1979到2018年哈德里胞的邊界、寬度、強度的變化,並比較各筆資料中的哈德里胞季節變化、年際變化、以及長期變化趨勢。我們發現全球暖化下的哈德里胞有明顯擴張趨勢,但是其強度變化則在各筆資料沒有一致表現。根據前人的理想化哈德里胞理論,哈德里胞的擴張有可能為副熱帶地區的對流層高度跟副熱帶地區的大氣穩定度增加造成。
本研究也透過ERSST v5的海溫資料,來了解大範圍熱帶海洋變異對區域性的哈德里胞影響。從聖嬰現象(El Nino-Southern Oscillation)模態的迴歸圖來說,我們可以看到南美洲跟印度洋區域型哈德里胞減弱,以及中東太平洋區域型哈德里胞增強。我們也從全球暖化模態的迴歸圖發現,全球暖化下西太平洋、東北太平洋跟大西洋的區域型哈德里胞強度增強最為明顯。
In previous studies, the difference between the Hadley Cell (HC) trend between Global Climate Models and reanalysis datasets is significant; therefore, we will focus on the HC trend presented in the near observational data, the reanalysis data. Our study of the HC will be done using the most popular reanalysis atmospheric datasets (ERA-Interim, ERA5, JRA-55, CFSR and CFSRv2 reanalysis), and will be used to examine the long-term variability, seasonal cycle, interannual variability of HC extent, width, and intensity from 1979 to 2018. Our results show that the HC has a consistent expanding trend; however, this is not the case with the HC strength trend. The HC expansion is also found to be correlated with the increase of subtropical tropopause height and subtropical gross static stability.
This study also uses ERSST v5 SST data to understand how large-scale SST modes influence the local HC. From the El Nino-Southern Oscillation (ENSO) regression map, we found that HC shows a decrease in intensity at South America and Indian Ocean during warm phases of ENSO, while the local HC intensity of the central and eastern Pacific increases. We also found that the Global Warming mode shows a local HC intensification at the western Pacific, northeastern Pacific and Atlantic Ocean specifically.
Acknowledgements V
中文摘要 VI
Abstract VII
List of Tables VIII
List of Figures VIII
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 4
2.1 Data Sources 4
2.2 Meridional Streamfunction 5
2.3 Scaling Theories 6
2.4 EOF Analysis 7
2.5 Wavelet Analysis 7
Chapter 3 Long-term HC trends in Different Reanalyses 9
3.1 Overview of HC in Different Reanalyses 9
3.2 Long-term Trends of HC in Different Reanalyses 10
3.3 Possible Mechanism for HC expansion 11
Chapter 4 Impact of Large-scale Modes on Local Hadley Cell 19
4.1 Effects of ENSO on Local Hadley Cell 19
4.2 Large-scale SST Mode Impact on Local Hadley Cell 20
Chapter 5 Conclusion and Discussion 25
References 28
Appendix: Results from Regional Perspectives 31
Berrisford, P. et al. (2011). The ERA-Interim archive version 2.0. Technical Report, ERA Report Series 1, ECMWF, Shinfield Park, Reading UK.
Chemke, R., & Polvani, L. M. (2019). Opposite tropical circulation trends in climate models and in reanalyses. Nature Geoscience, 12(7), 528–532. doi: 10.1038/s41561-019-0383-x
Feng, J., Li, J., & Xie, F. (2013). Long-Term Variation of the Principal Mode of Boreal Spring Hadley Circulation Linked to SST over the Indo-Pacific Warm Pool. Journal of Climate, 26(2), 532–544. doi: 10.1175/jcli-d-12-00066.1
Feng, J., & Li, J. (2013). Contrasting Impacts of Two Types of ENSO on the Boreal Spring Hadley Circulation. Journal of Climate, 26(13), 4773–4789. doi: 10.1175/jcli-d-12-00298.1
Freitas, A. C. V., & Ambrizzi, T. (2015). Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America. Advances in Meteorology, 2015, 1–22. doi: 10.1155/2015/780205
Freitas, A. C. V., Aímola, L., Ambrizzi, T., & Oliveira, C. P. D. (2016). Changes in intensity of the regional Hadley cell in Indian Ocean and its impacts on surrounding regions. Meteorology and Atmospheric Physics, 129(3), 229–246. doi: 10.1007/s00703-016-0477-6
Frierson, D. M. W., Lu, J., & Chen, G. (2007). Width of the Hadley cell in simple and comprehensive general circulation models. Geophysical Research Letters, 34(18). doi: 10.1029/2007gl031115
Guo, Y.-P., & Tan, Z.-M. (2018). Relationship between El Niño–Southern Oscillation and the Symmetry of the Hadley Circulation: Role of the Sea Surface Temperature Annual Cycle. Journal of Climate, 31(13), 5319–5332. doi: 10.1175/jcli-d-17-0788.1
Guo, Y.-P., & Tan, Z.-M. (2018). The Hadley Circulation Regime Change: Combined Effect of the Western Pacific Warming and Increased ENSO Amplitude. Journal of Climate, 31(23), 9739–9751. doi: 10.1175/jcli-d-18-0306.1
Held, I. M. (2000). The general circulation of the atmosphere. Proc. Geophysical Fluid Dynamics Program, Woods Hole, MA, Woods Hole Oceanographic Institute, 1–70. [Available online at http://gfdl.noaa.gov/cms-filesystem-action/user_files/ih/lectures/ woods_hole.pdf.]
Held, I. M., & Hou, A. Y. (1980). Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. Journal of the Atmospheric Sciences, 37(3), 515–533. doi: 10.1175/1520-0469(1980)037
Held, I. M., & Soden, B. J. (2006). Robust Responses of the Hydrological Cycle to Global Warming. Journal of Climate, 19(21), 5686–5699. doi: 10.1175/jcli3990.1
Hou, A. Y. (1998). Hadley Circulation as a Modulator of the Extratropical Climate. Journal of the Atmospheric Sciences, 55(14), 2437–2457. doi: 10.1175/1520-0469(1998)055
Hu, Y., & Fu, Q. (2007). Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7(19), 5229–5236. doi: 10.5194/acp-7-5229-2007
Huang, R., Chen, S., Chen, W., & Hu, P. (2018). Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region. Journal of Geophysical Research: Atmospheres, 123(1), 344–366. doi: 10.1002/2017jd027919
Kang, S. M., Polvani, L. M., Fyfe, J. C., & Sigmond, M. (2011). Impact of Polar Ozone Depletion on Subtropical Precipitation. Science, 332(6032), 951–954. doi: 10.1126/science.1202131
Kang, S. M., & Lu, J. (2012). Expansion of the Hadley Cell under Global Warming: Winter versus Summer. Journal of Climate, 25(24), 8387–8393. doi: 10.1175/jcli-d-12-00323.1
Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi (2015). The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001.
Lu, J., Vecchi, G. A., & Reichler, T. (2007). Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34(6). doi: 10.1029/2006gl028443
Lu, J., Chen, G., & Frierson, D. M. W. (2008). Response of the Zonal Mean Atmospheric Circulation to El Niño versus Global Warming. Journal of Climate, 21(22), 5835–5851. doi: 10.1175/2008jcli2200.1
Ma, J., & Li, J. (2008). The principal modes of variability of the boreal winter Hadley cell. Geophysical Research Letters, 35(1). doi: 10.1029/2007gl031883
Mitas, C. M. (2005). Has the Hadley cell been strengthening in recent decades? Geophysical Research Letters, 32(3). doi: 10.1029/2004gl021765
Nguyen, H., Evans, A., Lucas, C., Smith, I., & Timbal, B. (2013). The Hadley Circulation in Reanalyses: Climatology, Variability, and Change. Journal of Climate, 26(10), 3357–3376. doi: 10.1175/jcli-d-12-00224.1
Oort, A. H., & Yienger, J. J. (1996). Observed Interannual Variability in the Hadley Circulation and Its Connection to ENSO. Journal of Climate, 9(11), 2751–2767. doi: 10.1175/1520-0442(1996)009
Saha S, Moorthi S, Pan H‐L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Hou Y‐T, Chuang H‐Y, Juang H‐MH, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J‐K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C‐Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M. (2010). The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteorol. Soc. 91: 1015–1057.
Seo, K.-H., Frierson, D. M. W., & Son, J.-H. (2014). A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophysical Research Letters, 41(14), 5251–5258. doi: 10.1002/2014gl060868
Son, S.‐W., et al. (2010), Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271
Stachnik, J. P., & Schumacher, C. (2011). A comparison of the Hadley circulation in modern reanalyses. Journal of Geophysical Research: Atmospheres, 116(D22). doi: 10.1029/2011jd016677
Tao, L., Hu, Y., & Liu, J. (2015). Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dynamics, 46(9-10), 3337–3350. doi: 10.1007/s00382-015-2772-1
Vallis, G. K. (2006), Atmospheric and Oceanic Fluid Dynamics, 745 pp., Cambridge Univ. Press, Cambridge, U. K.
Wang, B., Yang, J., Zhou, T., & Wang, B. (2008). Interdecadal Changes in the Major Modes of Asian–Australian Monsoon Variability: Strengthening Relationship with ENSO since the Late 1970s. Journal of Climate, 21(8), 1771–1789. doi: 10.1175/2007jcli1981.1
Wang, C. (2001). Atmospheric Circulation Cells Associated with the El Niño–Southern Oscillation. Journal of Climate, 15(4), 399–419. doi: 10.1175/1520-0442(2002)015
Wang, G., Power, S. B., & Mcgree, S. (2015). Unambiguous warming in the western tropical Pacific primarily caused by anthropogenic forcing. International Journal of Climatology, 36(2), 933–944. doi: 10.1002/joc.4395
Yuan, X. (2004). ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Science, 16(4), 415–425. doi: 10.1017/s0954102004002238
Zeng, G., Wang, W.-C., Sun, Z., & Li, Z. (2011). Atmospheric circulation cells associated with anomalous east Asian winter monsoon. Advances in Atmospheric Sciences, 28(4), 913–926. doi: 10.1007/s00376-010-0100-6
Zhang, G., & Wang, Z. (2013). Interannual Variability of the Atlantic Hadley Circulation in Boreal Summer and Its Impacts on Tropical Cyclone Activity. Journal of Climate, 26(21), 8529–8544. doi: 10.1175/jcli-d-12-00802.1
Zhang, G., & Wang, Z. (2015). Interannual variability of tropical cyclone activity and regional Hadley circulation over the Northeastern Pacific. Geophysical Research Letters, 42(7), 2473–2481. doi: 10.1002/2015gl063318
電子全文 電子全文(網際網路公開日期:20220728)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔