(3.236.222.124) 您好!臺灣時間:2021/05/14 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠宇
研究生(外文):Kuan-Yu Chen
論文名稱:在無梯度的表面上引導自發性移動之液滴裝載液體貨物
論文名稱(外文):Directed Self-Propulsion of Droplets on Surfaces Absent of Gradients for Cargo Transport
指導教授:曹恆光
指導教授(外文):Heng-Kuang Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:自發性移動無梯度表面
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微流道系統中,無須施加外力就可以操縱液滴是很想達到且重要
的目標,儘管在表面形成潤濕性梯度已經達成了這個目標,但在運輸
的距離上還是很有限,從而限制了在長距離運輸上的發展。因此我們
提出了可以透過添加三矽甲烷表面活性劑和創建深槽來達到液滴在
表面上的遠距離運輸,前者提供了 Marangoni 應力來驅動液滴移動並
同時減少接觸線遲滯,後者則引導充滿表面活性劑的液滴在有各種幾
何圖案的路徑上移動,這種液滴體積僅微升就能移動長達 20 公分以
上的距離。透過會自發性移動的液滴我們發展出一種方便且不需添加
外力的運輸液滴的方式且多種基材和液體都可適用。此外藉由從不同
分支聚集但裝載不同液體貨物的自發性移動液滴,新型態的微形反應
器也被設計出來。
Manipulating droplet transportation without inputting work is desired and important in microfluidic systems. Although the creation of wettability gradient on surfaces has been employed to achieve this goal, the transport distance is very limited, hindering its applications in long-term operations. Here, we show that programming
long-ranged transport of droplets on surfaces can be achieved by the addition of trisiloxane surfactants and creation of deep grooves. The former provides Marangoni
stress to actuate the droplet motion and also reduces the inherent contact line pinning. The latter acts as a railing to guide the motion of surfactant-laden droplets to follow various layouts with geometric features of roads. The droplets with microliters can move over 20 cm. This work-free method is applicable to a variety of substrate materials and liquids. By using self-running shuttles, a convenient platform for liquid cargos transport is developed and demonstrated. Moreover, coalescence of cargos carried by different shuttles is accomplished in a three-branch layout, revealing new
droplet microreactors.
摘要
............................................................................................................. I Abstract ...................................................................................................... II List of Tables ......................................................................................... VIII I. Introduction ............................................................................................. 1 II. Experiment Section ................................................................................ 3 A. Materials ........................................................................................ 3 B. Wettability Characterization ......................................................... 3 C. Observation of Autonomous Droplet Motion ............................... 3 D. Surface Tension Measurement ...................................................... 4 III. Results and Discussion ......................................................................... 4 A. Transition from Partial/Total Wetting to Self-Propulsion ............ 4 B. Effects of Additives Concentration and Droplet Size on Self-propulsion ...................................................................................... 8 C. Directed droplet motion: coherent fluid motion ......................... 13 D. Applications of self-propulsion: Cargo transportation and droplet microreactor ........................................................................................ 17 E. Cloaking behavior of self-propelled droplet ............................... 21 IX. Conclusion .......................................................................................... 28 X. Reference ............................................................................................. 29 XI. Supporting Information ...................................................................... 33
(1) Jiu-an Lv, Yuyun Liu, Jia Wei, Erqiang Chen, Lang Qin & Yanlei Yu. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016). (2) N. J. Gira, A. Benusiglio, M. Prakash. Vapour-mediated sensing and motility in two-component droplets. Nature 519, 446-450 (2015). (3) Jieke Jiang, Jun Gao, Hengdi Zhang, Wenqing He, Jianqiang Zhang, Dan Daniel, and Xi Yao. Directional pumping of water and oil microdroplets on slippery surface. PNAS 116, 2482-2487 (2019). (4) L. Jiang, J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, A multi-structural and multi-functional integrated fog collection system in cactus Nat. Commun. 3, 1247 (2012) (5) Chu K.H., Xiao R, Wang E.N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9, 413–417 (2010). (6) Ahmet F. Demirörs, Fritz Eichenseher, Martin J. Loessner, André R. Studart. Colliodal shuttles for programmable cargo transport. Nat. Commun. 8, 1872-1878 (2017). (7) Bing Dai, Siheng Li, Tailin Xu, Yuefeng Wang, Feilong Zhang, Zhen Gu, Shutao Wang. Artificial asymmetric cilia array of dielectric elastomer for cargo transportation. ACS Appl. Mater. Interfaces 10, 42979-42984 (2018). (8) Markus Haapala, Jaroslav Po´ l, Ville Saarela, Ville Arvola, Tapio Kotiaho, Raimo A. Ketola, Sami Franssila, Tiina J. Kauppila, Risto Kostiainen. Desorption atmospheric pressure photoionization. Anal. Chem. 79, 7867-7872 (2007). (9) Kunihiro Ichimura , Sang-Keun Oh , Masaru Nakagawa , Science 288, 1624-1626 (2000). (10) Darren R. Link, Erwan Grasland-Mongrain, Agnes Duri, Flavie Sarrazin, Zhengdong Cheng, Galder Cristobal, Manuel Marquez, David A. Weitz, Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. 2556-2560, 45 (2006). (11) Masahide Gunji, Masao Washizu. Self-propulsion of a water droplet in an electric field. J. Phys. Appl. Phys. 38, 2417-2423 (2005).

29




(12) Chaoran Liu, Jing Sun, Jing Li, Chenghao Xiang, Lufeng Che, Zuankai Wang, Xiaofeng Zhou. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Sci. Report. 7, 7552 (2017). (13) Jie Liu, Haoyuan Guo, Bo Zhang, Shasha Qiao, Mingzhe Shao, Xianren Zhang, Xi-Qiao Feng, Qunyang Li, Yanlin Song, Lei Jiang, and Jianjun Wang. Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. Angew. Chem. Int. Ed. 55, 4265 –4269 (2016). (14) Juan Li, Xuelin Tian , Alexander Pyymaki Perros, Sami Franssila, Ville Jokinen. Self-Propelling and Positioning of Droplets Using Continuous Topography Gradient Surface. Adv. Mater. Interfaces 1, 1400001 (2014). (15) Jean Berthier, Kenneth A. Brakke. The physics of microdroplets. Wiley, USA, 2012. (16) Sara Morgenthaler, Christian Zink, Nicholas D. Spencer. Surface-chemical and – morphological gradients. Soft Matter 4, 419-434 (2008) (17) Yu-Hsuan Lai, Jing-Tang Yang, Dar-Bin Shieh. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lap chip 10, 499-504 (2010). (18) Manoj K. Chaudury, George M. Whitesides. How to make water run uphill. Science 256, 1539-1541 (1992). (19) Cira N. J., Benusiglio A., Prakash M. Vapour-mediated sensing and mobility in two-component droplets. Nature 519, 446-450 (2015). (20) Hu Ssu-Wei, Cheng-Yang Wang, Yu-Jane Sheng, Heng-Kwong Tsao Peculiar wetting of N,N-Dimethylformamide: expansion, contraction, and self-running. J. Phys. Chem. C 123, 24477-24486 (2019). (21) Vickramjeet S., Huang C.-J., Sheng Y.J, Tsao H.-K. Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops J. Mater. Chem. A 6, 2279-2288 (2018). (22) Fabrice Domingues Dos Santos and Thierry Ondarcuhu Free-running droplets. Phy. Rev. Lett. 75, 2972-2975 (1995). (23) Yao, X.; Bai, H.; Ju, J.; Zhou, D.; Li, J.; Zhang, H.; Yang, B.;Jiang, L. Running Droplet of Interfacial Chemical Reaction Flow. Soft Matter 2012, 8, 5988−5991.

30




(24) Ssu-Wei Hu, Cheng-Yang Wang, Yu-Jane Sheng, and Heng-Kwong Tsao Peculiar Wetting of N,N‑Dimethylformamide: Expansion, Contraction, and Self-Running. J. Phys. Chem. C 2019, 123, 24477−24486. (25) (Wu) Singh, V.; Wu, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Self-Propulsion and Shape Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. Langmuir 2017, 33, 6182−6191. (26) (Super) Eli Ruckenstein Superspreading: a possible mechanism. Colloid Surface A 412, 36-37 (2012). (27) (Muler) Panagiotis E. Theodorakis, Erich A. Muller, Richard V. Craster, Omar K. Matar. Superspreading: Mechanisms and molecular design. Langmuir 2015, 31, 8, 2304-2309. (28) N. A. Ivanova, N. M. Kovalchuk, V. D. Sobolev, V. M. Starov. Wetting films of aquoues solutions of Silwet L=77 on a hydrophobic surface. Soft Matter. 2016, 12, 26-30. (29) surbook) Milton J. Rosen. Surfactants and interfacial phenomena: third edition. John Wiley & Sons, INC. New York. 2004 (30) Hans Riegler and Paul Lazar. Delayed Coalescence Behavior of Droplets with Completely Miscible Liquid. Langmuir 24, 6395-6398, (2008) (31) Piotr Garstecki, Michael J. Fuerstman, Michael A. Fishbach, Samuel K. Sia, George M. Whitesides. Mixing with Bubbles: a Practical Technology for use with Portable Microfluidic Devies. Lab Chip, 5, 207-212 (2006) (32) Lee WG, Kim YG, Chung BG, Demirci U, Khademhosseini A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv. Deli. Rev. 62, 449-457 (2010). (33) (collosh) Ahmet F. Dermirors, Fritz Eichenseher, Martin J. Loessner, Andre R. Studart. Colloidal shuttles for programmable cargo transport. Nat. Commun. 8, 1872 (2017) (34) (activecargo) Ahmet F. Demirors, Mehmet Tolga Akan, Erik Poloni, Andre R. Studart. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft matter, 14, 4741-4719 (2018) (35) (magnetic) Jonathan S. Sander, Randall M. Erb, Claude Denier, and Andre R. Studart. Magnetic transport, mixing and release of cargo with tailored nanoliter droplets. Adv. Mater. 24, 2582-2587 (2012)

31




(36) Wei-Heong and Shoji Takeuchi. Timing controllable electrofusion device for aqueous droplet-based microreactors. Lap Chip, 6, 757-763 (2006). (37) Mizuki Tenjimbayashi, Masaki Higashi, Taku Yamazaki, Issei Takenaka, Takeshi Matsubayashi, Takeo Moriya, Masatsugu Komine, Ryohei, Yoshikawa, Kengo Manabe, Seimei Shiratori. Droplet motion control on dynamicaaly hydrophobic patterned surfaces as multifunctional liquid manipulators. ACS appl. Mater. Interfaces 9, 10371-10377 (2017) (38) Dan Daniel, Jaakko VI Timonen, Ruoping Li, Seneca Velling, Joanna Aizenberg. Oleoplaning droplets on lubricated surfaces. Nature Physics, 13(10), 1020-1025 (2017). (39) Frank Schellenberger, Jing Xie, Noemí Encinas, Alexandre Hardy, Markus Klapper, Periklis Papadopoulos, Hans-Jürgen Butt, Doris Vollmer. Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 11(38), 7617-7626 (2015). (40) Lin Guo, G. H. Tang, Satish Kumar. Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study. Langmuir, 35(49), 16377-16387 (2019). (41) Soumyadip Sett, Xiaowei Sherry Yan, George Barac, Leslie W. Bolton, Nenad Miljkovic. Lubricant-infused surfaces for low-surface-tension fluids: promise versus reality. ACS applied materials & interfaces, 9(41), 36400-36408 (2017).
電子全文 電子全文(網際網路公開日期:20210701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔