(3.235.245.219) 您好!臺灣時間:2021/05/07 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃庭臻
研究生(外文):Ting-Chen Huang
論文名稱:鈀銅奈米金屬合金在二氧化矽粒上製備之研究
論文名稱(外文):Effect of Preparation Method on the Formation of Palladium-Copper Nanoalloy in the Shell of Large Silicon Dioxide Beads
指導教授:陳郁文陳郁文引用關係
指導教授(外文):Yu-Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:70
中文關鍵詞:鈀銅合金二氧化矽粒彈殼型觸媒濕式含浸法
外文關鍵詞:PdCu alloysilica beadegg-shell catalystincipient-wetness impregnation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬在二氧化矽粒上的分佈及結構,在過去及現在的化學工業中扮演非常重
要的腳色,了解其製備方法,有助於提高觸媒的催化效果。在此研究中,主要研
究一製備方法去形成鈀銅合金奈米金屬在蛋殼型二氧化矽粒載體上,如何製備該
觸媒是非常重要的,因為PdCu/SiO2 是液相合成乙酸乙脂反應的催化劑,烯烴的
乙酰氧基化,隨著液相方法改進,發展出乙烯和丙烯的氣相乙酰氧基化,但由於
反應介質是酸性的,鈀和銅會遷移並且燒結,導致嚴重的失活。在此研究中,分
別使用5 釐米直徑的天然二氧化矽以及3 釐米的人造二氧化矽進行研究,其中天
然二氧化矽粒中含有鈉離子,可能會導致孔結構損失,而合成觸媒不含鈉離子,
在製備過程中相較穩定。共有8 種不同製備步驟會在此研究中討論,包含探討是
否添加氯化鋁與氫氧化鉀,以及其添加量,與鍛燒溫度對鈀銅合金與薄殼厚度的
影響,利用光學顯微鏡、X 射線衍射、透射電子顯微鏡與高解析度透射電子顯微
鏡來對樣品進行分析。
在製備過程中,含有加入氫氧化鉀的步驟之樣品,皆能成功做出蛋殼型結構
觸媒,也可以在樣品分析中看見鈀銅形成黑色合金在二氧化矽粒的殼層,且以下
方法製備出來的鈀銅合金觸媒,擁有最薄的蛋殼型結構:將氯化鋁加入去子水中
後滴入人造觸媒後180 ℃乾燥2 小時,將氫氧化鉀加入去子水中後滴入樣品後
110 ℃乾燥4 小時,將樣品浸漬在金屬容液中後80℃乾燥6 小時,接著在250℃
鍛燒2 小時,在冰浴中以硼氰化鈉慢慢入樣品中還原,並在冰浴靜置30 分鐘後
以去離子水水洗5 次,最後以真空乾燥25℃乾燥12 小時。
The distribution of metals in the shell of large silicon dioxide beads plays a crucial role
in many industry-oriented applications over the past decades and an understanding of
its preparation method is much helpful for the improvement of catalytic efficiency of
the catalyst. The main purpose of this study was to develop a method to prepare the
formation of alloys of palladium-copper nano-metal in the shell of silicon dioxide bead
which was used as the carrier. How to prepare bi-metal on bead catalyst with an eggshell
structure using in production of allyl acetate is very important to chemical industry
because PdCu/SiO2 is used as the catalyst for the reaction of the gas phase acetoxylation
of ethylene and propylene in industry. Since the reaction medium is acidic, Pd and Cu
would migrate and sinter as time went by, causing severe deactivation. It was found that
Cu would migrate to the inside core of SiO2 bead, causing deaction of the reaction. By
forming PdCu nano alloy, the migration of Cu may be limited. The composition of SiO2
carriers also has some effect on the catalytic properties of the catalyst. Two SiO2 beads
were tested in this study, natural and synthetic spherical silicon dioxide with 5 and 3
mm size, respectively. The natural SiO2 beads contain Na cations, which may influence
the deactivation rate. In preparation, Pd and Cu metal salts were added by impregnation
and potassium hydroxide solution was added to push the metal cations to shell side. The
preparation procedure, such as drying, calcination, concentration of KOH solution, and
the order of the above steps influence the thickness of metal shell on silica beads. The
reduction method is needed to ensure Pd and Cu to form alloy on the silica surface.
Eight preparation methods with various steps were carried out in this study. All the
samples were characterized by optical microscope, X-ray diffraction, transmission
electron microscopy, and high resolution-transmission electron microscopy.
iii
The synthetic silica does not have sodium cation, the pore structure was very stable
after preparation of catalyst. Instead, natural silica bead contains sodium cation, it was
not stable in acidic condition during preparation process, and resulted in loss of pore
structure. Using KOH solution before adding metal solution in preparation could form
egg-shell structure. All samples under KOH solution and reduction showed dark black
spots in shell side of SiO2 beads. PdCu had thinner distribution in the shell side in
synthetic silica than natural silica.
The catalyst prepared by the following method had the thinnest shell among all
catalysts: The silica particles were synthetic silica. AlCl3 in 10 ml DI water was added
into sample and then dried at 180 ℃ for 2 h. KOH in 10 ml DI water was added into
the sample and dried at 110 ℃ for 4 h. The sample was impregnated with metal salts
(Na2PdCl4 and CuCl2) solution and dried at 80 ℃ for 6 h. After that, the sample was
calcined at 250 ℃ for 2 h and was stirred in an ice bath and reduced with a NaBH4
solution drop by drop. Next, keeping the sample in an ice bath for 30 min and washed
5 times by DI water. The sample was vacuum dried at 25 ℃ for 12 h.
中文摘要 ............................................................................................................................... i
Abstract ............................................................................................................................... ii
Table of Contents ................................................................................................................. iv
List of Tables ....................................................................................................................... vi
List of Figures ..................................................................................................................... vii
CHAPTER 1 INTRODUCTION ........................................................................................... 1
1.1 Structure of Catalyst .................................................................................................... 1
1.2 The PdCu Alloy ........................................................................................................... 2
CHAPTER 2 LITERATURE REVIEWS............................................................................... 4
2.1 Incipient-wetness impregnation method ....................................................................... 4
2.2 Calcination temperature and structure .......................................................................... 4
CHAPRER 3 EXPERIMENTAL........................................................................................... 7
3.1 Material ....................................................................................................................... 7
3.1.1Carrier characteristics ............................................................................................ 8
3.2 Preparation of Pd-Cu/SiO2 Catalysts ............................................................................ 9
3.2.1Power catalysts ...................................................................................................... 9
3.2.2 PdCu alloy in SiO2 Beads with Egg-Shell structure ............................................... 9
3.3 Characterization of catalysts ...................................................................................... 11
3.3.1 Optical microscopy (OM) ................................................................................... 11
3.3.2 X-ray diffraction (XRD) ..................................................................................... 12
3.3.4 Transmission electron microscopy (TEM) ........................................................... 12
3.3.5 High resolution transmission electron microscopy(HRTEM) ............................... 13
CHAPTER 4. CHARACTERISTICS OF Pd-Cu/SiO2 CATALYSTS .................................. 15
4.1 Introduction ............................................................................................................... 15
4.1.1 Power catalysts ................................................................................................... 16
4.1.2 PdCu alloy on Egg-Shell structure catalysts......................................................... 16
4.2 Results and Discussion .............................................................................................. 20
v
4.2.1 Sectional view by OM or rear camera of smartphone ........................................... 20
4.2.2 XRD ................................................................................................................... 28
4.2.3 TEM ................................................................................................................... 36
4.2.4 HRTEM .............................................................................................................. 41
4.3 Conclusion ................................................................................................................ 52
REFERENCE ..................................................................................................................... 54
[1] R. G. Chaudhuri, S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications”. Chem. Rev. 112 (2012) 2373-2433
[2] P. Munnik, P. E. De Jongh, P.E., K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts”, Chem. Rev. 115 (2015) 6687-6718.
[3] S. Giorgio, C.R. Henry. “Core-Shell Bimetallic Particles, Prepared by Sequential Impregnations”. Eur. Phys. J. AP. 20 (2002) 23-27.
[4] M. L. Toebes, J. A. van Dillen, K. P. de Jong. “Synthesis of Supported Palladium Catalysts”. J. Mol. Catal. A: Chemical 173 (2001) 75-98.
[5] Y. Pan, X. Shen, L. Yao, A. Bentalib, Z. Peng. “Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice”. Catalysts 8 (2018) 478-498.
[6] A. Balandin, “Modern State of the Multiplet Theory of Heterogeneous Catalysis”. Adv. Catal. 19 (1969) 1-210.
[7] J. Philips, A AurollX, G. Bergeret, J. Massardier , A Renouprez. “Supported Pd-Cu Catalysts Prepared from Bimetallic Organo-metallic Complexes: Relation Between Surface Composition Measured by Ion Scattering and Reactivity”. J. Phys. Chern. 97 (1993) 3565-3570.
[8] A.J. Renouprez, K Lebas, G. Bergeret, J.L. Rousset, P. Delicher. “Supported Pd-Cu Catalysts Prepared from Bimetallic Organo-Metallic Complexes: Relation Between Surface Composition Measured by Ion Scattering and Reactivity”, Surf. Sci. Catal. 101 (1996) 1105-1115.
[9] X. Wang, N. Kariuki, J.T. Vaughey, J. Goodpaster, R. Kumar, D.J. Myers. “Bimetallic Pd-Cu Oxygen Reduction Electrocatalysts”, J. Electrochem. Soc. 155 (2008) B602-B609.
[10] F. Fouda-Onana, S. Bah, O. Savadogo. “Palladium-Copper Alloys as Catalysts for the Oxygen Reduction Reaction in an Acidic Media I: Correlation between the ORR
55
Kinetic Parameters and Intrinsic Physical Properties of the Alloys”, J. Electroanal. Chem. 636 (2009) 1-9.
[11] W.Tang, G. Henkelman. “Charge Redistribution in Core-Shell Nanoparticles to Promote Oxygen Reduction”, J. Chem. Phys. 130 (2009) 194505-194512.
[12] Q. Gong, S.P. Gong, J.W. Zheng, X. Cheng, W.F. Yang, T.F. Zhang, L.Y. Huang. “High Catalytic Activity of Carbon Supported PdCu Alloyed Catalysts toward Oxygen Reduction Reaction”, ECS Transact. 85 (2018) 845-854.
[13] W. Tang, L. Zhang, G. Henkelman. “Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction”, J. Phys. Chem. Lett. 2 (2011) 1328-1331.
[14] A. Konstantinos, Goulas, Sanil Sreekumar, Yuying Song, Purnima Kharidehal, Gorkem Gunbas, Paul J. Dietrich, Gregory R. Johnson, Y. C. Wang, Adam M. Grippo, Lars C. Grabow, Amit A. Gokhale and F. Dean Toste, “Synergistic Effects in Bimetallic Palladium−Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions”, J. Am. Chem. Soc. 138 (2016) 6805-6812.
[15] K. Sun, J. Liu, N. K. Nag, N. D. Browning, “Atomic Scale Characterization of Supported Pd-Cu/ç-Al2O3 Bimetallic Catalysts”, J. Phys. Chem. B. 106 (2002) 12239-12246.
[16] S. Haukka, E. L. Lakomaa, T. Suntola, “Adsorption Controlled Preparation of Heterogeneous Catalysts”, Stud. Surf. Sci. Catal., 120 A (1999) 715-750.
[17] L. Delannoy, N. E.Hassan, A. Musi, N. N. Le To , J.-M. Krafft, C. Louis. “Preparation of Supported Gold Nanoparticles by a Modified Incipient Wetness Impregnation Method”, J. Phys. Chem. B 110, 45 (2006) 22471–22478.
[18] M. Bowker, A. Nuhu, and J. Soares, “High Activity Supported Gold Catalysts by Incipient Wetness Impregnation”, Catal. Today 122 (2007) 245–247.
[19] M. Bonarowska, J. Pielaszek, W. Juszczyk, Z. Karpiński,“Characterization of Pd–Au/SiO2 Catalysts by X-ray Diffraction, Temperature-Programmed Hydride Decomposition, and Catalytic Probes”, J. Catal. 195, (2000) 304-315.
[20] J.T. Richardson. J.L. Propp, “Pore Size Effects on Sintering of Ni Al2O3 Catalysts”,
56
J. Catal. 98 (1986) 457-467.
[21] V. Mukundan, J. Yin, P. Joseph, J. Luo, S. Shan, D. N Zakharov, C. J. Zhong, O.
Malis, “Nanoalloying and Phase Transformations during Thermal Treatment of
Physical Mixtures of Pd and Cu Nanoparticles”, Sci. Technol. Adv. Mater. 15 (2014)
025002-0250018.
[22] C. Mottet, G. Treglia, “Theoretical Investigation of Chemical and Morphological
Ordering in PdcCu1-c Clusters”, Phys. Review B. 66 (2002) 045413-045423
[23] V. Mukundan1, J. Yin, C. J. Zhong, O. Malis, “Phase Transformations in Physical
Mixtures of Pd-Cu Nanoparticles”, Mater. Res. Soc. Symp. Proc. 1528 (2013) 04-10.
[24] L. Guczi, Z. Schay, , G. Stefler, L.F. Liotta, G. Deganello, A.M. Venezia, “Pumicesupported
Cu-Pd catalysts: Influence of Copper on the Activity and Selectivity of
Palladium In the Hydrogenation of Phenylacetylene and but-1-ene”, J. Catal. 182 (1999)
456-46.
[20] M. Li, P. Villars, H. Okamoto, K. Cenzual, “Pd-Cu Phase Diagram ASM
Handbook Volume 3: Alloy Phase Diagrams ed”, ASM International (2006).
[21] C. Wang, D. P. Chen, X. Sang, R. R. Unocic, S. E. Skrabalak, “Size-Dependent
Disorder−Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu
Nanocatalysts”, ACS Nano. 10 (2016) 6345-6353.
[22] D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F.J. DiSalvo,
H.D. Abruña, “Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell
Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction”,
Electrocatal. Nat. Mater. 12 (2013) 81-87.
[23] K. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu, R. Adzic, “Gold-Promoted
Structurally Ordered Intermetallic Palladium Cobalt Nanoparticles for the Oxygen
Reduction Reaction”, Nature Commun. 5 (2014) 5185-2193.
[24] I. H. Chen,“Preparation of Pd-Cu/silicon Dioxide Bimetallic Catalyst and its Effect
on its Properties”. MS Thesis, National Central Univ, Taiwan (2019).
57
[25] T. Tacke, H. Mueller, U. Ohlrogge, F. P. Daly, H. L. Rotgerink, H. Krause,
“Catalyst, Method of its Production and Its for Production of Vinyl Acetate Monomer”,
US Patent 5808136 (1998).
[26] A. M. Venezia, L. F. Liotta, G. Deganello, Z. Schay, L. Guczi, “Characterization
of Pumice-Supported Ag–Pd and Cu–Pd Bimetallic Catalysts by X-Ray Photoelectron
Spectroscopy and X-Ray Diffraction”, J. Catal. 182 (1999) 449–455.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔