(3.238.130.97) 您好!臺灣時間:2021/05/15 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱德叡
研究生(外文):Te-Jui Chu
論文名稱:官能基化之鋯有機金屬框架對於聚苯並咪唑混合基材薄膜特性與氣體滲透之探討
論文名稱(外文):Investigation of Functionalized Metal-Organic Framework/Polybenzimidazole Mixed-Matrix Membrane for Gas Separation
指導教授:張博凱張博凱引用關係
指導教授(外文):Bor-Kae Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:70
中文關鍵詞:鋯有機金屬框架 (UiO-66NH2-UiO-66 and NO2-UiO-66)官能基化聚苯並咪唑氣體滲透與分離有機無機複合薄膜
外文關鍵詞:Zr-MOFs (UiO-66NH2-UiO-66 and NO2-UiO-66)gas permeationgas separation performancefunctionalizationMixed Matrix Membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機金屬框架(Metal-organic framework, MOF)是一種常用於複合 薄膜的多孔性填料材料。相較於純膜的性質,在各種複合膜中以混合 基質薄膜(Mixed matrix membranes, MMMs)會有更佳優異的氣體輸送 及分離表現,而官能基化的有機金屬框架材料則有助於改善混合基質 薄膜的製備。MOF 上的官能基能夠提升氣體分離效果以及增加填料 顆粒與高分子介面的親和力,以避免微結構的缺陷產生。舉例來說, 以NH2-UiO-66 與PIM-1 合成的混合基質薄膜展現了因為官能基與高 分子鍊產生氫鍵,因而加強了在高分子與填料顆粒的介面附著性[1]。 而在本實驗中,我們使用純、胺基以及硝基化的鋯有機金屬框架(UiO- 66)來研究官能基化對Zr-MOF 與聚苯並咪唑(polybenzimidazole, PBI) 的效應,並且以5 ,10, 15 wt%的添加物比例來製備薄膜同時避免合成 時顆粒團聚或沉澱的狀況。除此之外,我們以XRD 鑑定MOF 結構 的結晶性;以SEM 觀察微結構下填料與高分子的包覆與交聯情形; 以熱重分析(TGA)結構的穩定性以及樣品的熱崩解狀態。最後,我們 會將薄膜樣品進行氣體通透的測試,以鑑定薄膜樣品對於氣體的滲透 與選擇能力。
Metal-organic framework (MOF) is a common material used as filler in polymer membranes. Such composite membranes, known as mixed matrix membranes (MMMs) perform better than neat membranes in gas separation applications. Functionalization of MOFs is an important method to improve the fabrication of MMMs. Functional groups enhance the gas separation and interaction between MOF and polymer surface to avoid the formation of defects. For instance, NH2-UiO-66/PIM-1 composite showed interfacial adhesion due to H-bonding interaction at the polymer surface[1] . In this work, we used UiO-66, amino-, and nitro-modified variants to investigate the effect of functional groups between Zr-MOFs and polybenzimidazole (PBI), and we prepared 5, 10 and 15 wt % MOF loading in the polymer in order to investigate agglomeration and sedimentation of particles. Furthermore, XRD characterization was used to determine the crystallinity of the MOF structure; EDS mapping images were used to investigate the dispersion of particles in the matrix; SEM images showed the level of interaction between filler and polymer; TGA analysis indicated the structural stability and the decomposition of the composites. Finally, gas permeation tests demonstrate the gas transport properties and selectivity of the membranes.
Table of Contents
摘要................................................................................................................................. i
Abstract ........................................................................................................................ iii
Acknowledgement ........................................................................................................ iv
Table of Contents ........................................................................................................... v
List of Figures .............................................................................................................. vii
List of Tables ................................................................................................................. ix
Chapter 1 Background ................................................................................................... 1
1-1 Introduction ................................................................................................ 1
1-2 Review of Relevant Literature ................................................................... 5
1-3 Motivation .................................................................................................. 9
Chapter 2 Experimental ............................................................................................... 11
2-1 Materials and Reagents ............................................................................ 11
2-2 Material Analysis Techniques .................................................................. 11
2-3-1 X-ray Diffraction (XRD) ............................................................. 11
2-3-2 Scanning Electron Microscopy (SEM) ........................................ 12
2-3-3 Energy-Dispersive X-ray Spectroscopy (EDS)............................ 13
2-3-4 Thermogravimetric Analysis (TGA) ............................................ 13
2-3-5 BET Surface Area Analysis and Pore Size Distribution .............. 13
2-3-6 Fourier-Transform Infrared spectroscopy (FTIR) ........................ 15
2-3-7 Single Gas Separation System............................................................ 15
2-3 Experimental Procedure ........................................................................... 17
2-4 Instruments ............................................................................................... 17
2-4-1 Synthesis of UiO-66 and Derivatives .......................................... 17
2-4-2 Synthesis of Pure PBI membrane & UiO-66 MOFs/PBI MMMs 18
2-4-3 Gas permeation measurements for membranes ........................... 20
Chapter 3 Results and Discussion ................................................................................ 22
3-1 UiO-66 powder Characterization ............................................................. 22
3-1-1 X-Ray Diffraction of UiO-66 and the Derivatives....................... 22
3-1-2 Morphology of UiO-66 and the Derivatives ................................ 23
3-1-3 Sorption Analysis of UiO-66 and the Derivatives ....................... 24
3-1-4 Pore size distribution of UiO-66 and the Derivatives .................. 26
3-1-5 FTIR spectra of UiO-66 and the Derivatives ............................... 29
3-1-6 Thermogravimetric Analysis of UiO-66 and the Derivatives ...... 30
3-2 UiO-66s/PBI Mixed Matrix Membrane Characterization ....................... 32
X-Ray Diffraction of UiO-66 and the Derivatives/PBI MMMs .. 32
The Morphology of UiO-66 and the Derivatives/PBI Mixed
vi
Matrix Membrane ........................................................................................ 34
FTIR Spectra of UiO-66 and the Derivatives/PBI MMMs .......... 38
Thermogravimetric Analysis of UiO-66 and the Derivatives /PBI
MMMs 40
3-3 Gas Separation Performance of UiO-66 and the Derivatives/PBI MMMs
42
Chapter 4 Conclusions ................................................................................................. 49
Chapter 5 Future Work ................................................................................................. 50
References .................................................................................................................... 51
1. Ghalei, B., et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017. 2(7).
2. Bui, M., et al., Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 2018. 11(5): p. 1062-1176.
3. Koros, W.J., Evolving beyond the thermal age of separation processes: Membranes can lead the way. AIChE Journal, 2004. 50(10): p. 2326-2334.
4. Vinoba, M., et al., Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 2017. 188: p. 431-450.
5. Li, W., et al., Metal−organic framework composite membranes: Synthesis and separation applications. Chemical Engineering Science, 2015. 135: p. 232-257.
6. Katayama, Y., K.C. Bentz, and S.M. Cohen, Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Appl Mater Interfaces, 2019. 11(13): p. 13029-13037.
7. Pechar, T., et al., Fabrication and characterization of polyimide–zeolite L mixed matrix membranes for gas separations. Journal of Membrane Science, 2006. 277(1-2): p. 195-202.
8. Ahn, J., et al., Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science, 2008. 314(1-2): p. 123-133.
9. Tien-Binh, N., D. Rodrigue, and S. Kaliaguine, In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. Journal of Membrane Science, 2018. 548: p. 429-438.
10. Li, L., et al., ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance. Journal of Applied Polymer Science, 2014. 131(22): p. n/a-n/a.
11. Lin, R., et al., Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018. 6(2): p. 293-312.
12. Ma, L., et al., Engineering of the Filler/Polymer Interface in Metal-Organic Framework-Based Mixed-Matrix Membranes to Enhance Gas Separation. Chem Asian J, 2019. 14(20): p. 3502-3514.
13. Perez, E.V., et al., Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009. 328(1-2): p. 165-173.
14. Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1-2): p. 390-400.
15. Freeman, B.D., Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999.
16. Tanh Jeazet, H.B., C. Staudt, and C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans, 2012. 41(46): p. 14003-27.
17. Suhaimi, H.S.M., C.P. Leo, and A.L. Ahmad, Hydrogen Purification Using Polybenzimidazole Mixed-Matrix Membranes with Stabilized Palladium Nanoparticles. Chemical Engineering & Technology, 2017. 40(4): p. 631-638.
18. Yang, T., Y. Xiao, and T.-S. Chung, Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011. 4(10): p. 4171.
19. Jasmina Hafizovic Cavka, S.J., † Unni Olsbye,† Nathalie Guillou,‡ Carlo Lamberti,§ Silvia Bordiga,§ and Karl Petter Lillerud*,†, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. JACS, 2008.
20. Cmarik, G.E., et al., Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012. 28(44): p. 15606-13.
21. Yang, Q., et al., Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem Commun (Camb), 2011. 47(34): p. 9603-5.
22. Gadzikwa, T., et al., A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chem Commun (Camb), 2009(25): p. 3720-2.
23. Qian, Q., et al., Mixed-Matrix Membranes Formed from Imide-Functionalized UiO-66-NH2 for Improved Interfacial Compatibility. ACS Appl Mater Interfaces, 2019. 11(34): p. 31257-31269.
24. Rada, Z.H., et al., Functionalized UiO-66 by Single and Binary (OH)2 and NO2 Groups for Uptake of CO2 and CH4. Industrial & Engineering Chemistry Research, 2016. 55(29): p. 7924-7932.
25. Ahmad, M.Z., et al., Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018. 558: p. 64-77.
26. Biswas, S. and P. Van Der Voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2Adsorption Properties. European Journal of Inorganic Chemistry, 2013. 2013(12): p. 2154-2160.
27. Abanades Lazaro, I., et al., Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. Chem, 2017. 2(4): p. 561-578.
28. Zheng, B., et al., High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chem Commun (Camb), 2012. 48(56): p. 7025-7.
29. BANGLIN CHEN, † SHENGCHANG XIANG,† AND GUODONG QIAN*, Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. 2010. 43.
30. Kim, M. and S.M. Cohen, Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 2012. 14(12): p. 4096-4104.
31. Waqas Anjum, M., et al., MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2. Journal of Membrane Science, 2016. 502: p. 21-28.
32. Chen, X.Y., et al., Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. Industrial & Engineering Chemistry Research, 2012. 51(19): p. 6895-6906.
33. Katz, M.J., et al., Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem Sci, 2015. 6(4): p. 2286-2291.
34. Kandiah, M., et al., Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010. 22(24): p. 6632-6640.
35. MARVEL, H.V.a.C.S., Polybenzimidazoles, New Thermally Stable Polymers *. 1961.
36. Suryani, et al., Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. Journal of Membrane Science, 2012. 403-404: p. 1-7.
37. Pérez-Francisco, J.M., et al., Evaluation of Gas Transport Properties of Highly Rigid Aromatic PI DPPD-IMM/PBI Blends. Industrial & Engineering Chemistry Research, 2017. 56(33): p. 9355-9366.
38. Kumbharkar, S.C., P.B. Karadkar, and U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. Journal of Membrane Science, 2006. 286(1-2): p. 161-169.
39. Hu, Z., et al., Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal–Organic Framework Nanoparticles for Efficient H2/CO2 Separation. Industrial & Engineering Chemistry Research, 2016. 55(29): p. 7933-7940.
40. Mahajan, R., Burns, Ryan ,Schaeffer, Michael, Koros, William J., Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 2002. 86(4): p. 881-890.
41. Ordoñez, M.J.C., et al., Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010. 361(1-2): p. 28-37.
42. KOROS, R.M.a.W.J., Mixed Matrix Membrane Materials With Glassy Polymers. Part 1. 2002.
43. Moore, T.T. and W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes. Journal of Molecular Structure, 2005. 739(1-3): p. 87-98.
44. Li, Y., W.B. Krantz, and T.-S. Chung, A novel primer to prevent nanoparticle agglomeration in mixed matrix membranes. AIChE Journal, 2007. 53(9): p. 2470-2475.
45. Bae, T.H., et al., A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed Engl, 2010. 49(51): p. 9863-6.
46. Japip, S., Y. Xiao, and T.-S. Chung, Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2016. 55(35): p. 9507-9517.
47. Sorribas, S., et al., Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. Journal of Membrane Science, 2014. 452: p. 184-192.
48. Hao, L., et al., Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013. 436: p. 221-231.
49. Hudiono, Y.C., et al., Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. Journal of Membrane Science, 2011. 370(1-2): p. 141-148.
50. Shindo, R., et al., Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. Journal of Membrane Science, 2014. 454: p. 330-338.
51. Seoane, B., et al., Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al). CrystEngComm, 2013. 15(45): p. 9483.
52. Marti, A.M., et al., Simple Fabrication Method for Mixed Matrix Membranes with in Situ MOF Growth for Gas Separation. ACS Appl Mater Interfaces, 2018. 10(29): p. 24784-24790.
53. Wang, Z., et al., Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry A, 2017. 5(22): p. 10968-10977.
54. Venna, S.R., et al., Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015. 3(9): p. 5014-5022.
55. Kinoshita, Y., et al., Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. Journal of Membrane Science, 2017. 539: p. 178-186.
56. Fan, Y., et al., Tröger 's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. Journal of Membrane Science, 2019. 573: p. 359-369.
57. Garibay, S.J. and S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun (Camb), 2010. 46(41): p. 7700-2.
58. Valero, M., et al., Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Microporous and Mesoporous Materials, 2014. 192: p. 23-28.
59. Koros*, R.M.a.W.J., Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. 2000.
60. Bader, M., MB-Ruler - the triangular screen ruler 5.3. 2002-2014.
61. Rada, Z.H., et al., Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018. 28(2): p. 160-167.
62. C. Sangwichien, G.L.A., M.D. Donohue *, Density functional theory predictions of adsorption isotherms with hysteresis loops. 2002.
63. Hu, Z., et al., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg Chem, 2015. 54(10): p. 4862-8.
64. Molavi, H., et al., Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous and Mesoporous Materials, 2018. 257: p. 193-201.
65. Chen, Q., et al., Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science, 2015. 327: p. 77-85.
66. WANG, C., METAL-ORGANIC MATERIALS FOR HARMFUL ANIONIC SPECIES REMOVAL FROM AQUEOUS SOLUTION: INVESTIGATION, CHARACTERIZATION AND APPLICATION. 2017.
67. Liang, W., et al., Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study. Dalton Trans, 2016. 45(11): p. 4496-500.
68. Chen, S., et al., Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. Journal of Porous Materials, 2018. 25(6): p. 1783-1788.
69. Jamshidifard, S., et al., Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater, 2019. 368: p. 10-20.
70. Zhuang, S., R. Cheng, and J. Wang, Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chemical Engineering Journal, 2019. 359: p. 354-362.
71. Tai, S., et al., Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Materials, 2016. 220: p. 148-154.
72. Abou-Elyazed, A.S., et al., A Series of UiO-66(Zr)-Structured Materials with Defects as Heterogeneous Catalysts for Biodiesel Production. Industrial & Engineering Chemistry Research, 2019. 58(48): p. 21961-21971.
73. Subudhi, S., et al., The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catalysis Science & Technology, 2019. 9(23): p. 6585-6597.
74. Hong, J.W., et al., One-pot synthesis and electrocatalytic activity of octapodal Au-Pd nanoparticles. Chem Commun (Camb), 2011. 47(9): p. 2553-5.
75. Wu, S., et al., Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water. Environ Technol, 2018. 39(15): p. 1937-1948.
76. DeCoste, J.B., et al., Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642.
77. Zhang, M.Q., Rong, M. Z., Zhang, H. B., & Friedrich, K., Mechanical Properties of Low Nano-Silica Filled High Density Polyethylene Composites. POLYMER ENGINEERING AND SCIENCE, 2003. 43.
78. Min Zhi Ronga, Ming Qiu Zhanga, Yong Xiang Zhenga, Han Min Zengb, R. Walterc, K. Friedrichc, Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. ELSEVIER, 2001.
79. Shen, J., et al., UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016. 513: p. 155-165.
80. Zaworotko, S.S.a.M.J., Exploitation of the hydrogen bond: recent developments in the context of crystal engineering. 1994.
81. Robeson, L.M., Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991.
電子全文 電子全文(網際網路公開日期:20250731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top