(3.227.0.150) 您好!臺灣時間:2021/05/08 10:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇軒
研究生(外文):Yu-Syuan Jheng
論文名稱:鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
論文名稱(外文):Ce-Doped Li7La3Zr2O12 Solid state Electrolyte for Lithium-Ion Batteries
指導教授:李岱洲張仍奎洪逸明
指導教授(外文):Tai-Chou LeeJeng-Kuei ChangI-Ming Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:166
中文關鍵詞:鋰離子電池固態電解質Li7La3Zr2O12鈰摻雜
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部分以固相反應法製備固態電解質Li7La3Zr2O12,並首度成功合成出純Cubic相不同鈰(Ce)摻雜量的Li7La3Zr2O12,並藉由與鎵(Ga)摻雜和未摻雜等共五種不同Li7La3Zr2O12在晶體結構及材料特性上做比較。
本研究第二部分採用刮刀塗佈法製備非獨立式固態電解質薄膜,有效解決純固態電解質與正負兩極界面阻抗過高無法正常運作問題,並藉由調配高分子(Poly(ethylene oxide) (PEO))與鋰鹽(LiTFSI)的比例(EO/Li+)、固態電解質粉末含量、固態電解質薄膜厚度來尋找刮刀塗佈法的最佳參數,在最佳參數為EO/Li+=10、0.15g-0.25Ga-Li7La3Zr2O12、刮刀厚度1000 μm時,於65 oC下搭配磷酸鋰鐵(LiFePO4)正極,在0.1C展現出放電電容值為129.4 mAh/g,庫倫效率為95.08%,高速維持率為66.54% (1C)。
本研究第三部分沿用第二部分的最佳參數,比較五種不同Li7La3Zr2O12的電化學性能,Li7La3Zr1.9Ce0.1O12展現出最優異的電化學性質,在0.1C下放電電容值達146.5 mAh/g,庫倫效率為96.51%,高速維持率達69.28% (1C),複合型薄膜鋰離子導離子率達1.27 x 10-4 S/cm。
A single-phase Li7La3Zr2O12 (LLZO) solid electrolyte was synthesized using a solid-state reaction method. The influences of doping elements (Ga, Ce) on the properties of LLZO were investigated. To our best knowledge, Ce-doped LLZO was first synthesized in our laboratory. The electrochemical performance of Ce-doped was thoroughly investigated in this thesis.
We prepared the non-freestanding solid state electrolyte film by the doctor-blade method to reduce the resistance between electrolyte and electrode. The hybrid electrolyte was composed of Ga-doped LLZO (Ga-LLZO), LiTFSI, Poly(ethylene oxide) was prepared. The ratio of polymer and lithium (EO/Li+) and Ga-LLZO content and the doctor blade thickness were changed to compare their electrochemical properties. The optimized solid state electrolyte film (Ga-LLZO) was able to deliver a superior Coulombic efficiency of 95.08%, a capacity of 129.4 mAh/g (@ 0.1C), and an excellent rate capability (66.54% @ 1C).
We compared different LLZO with different dopants and find out that Li7La3Zr1.9Ce0.1O12 exhibited the best electrochemical performance. The ionic conductivity of hybrid(0.1Ce-LLZO) electrolyte was 1.27 x 10-4 S/cm. The battery composed of the Ce-LLZO hybride electrolyte shows a The capacity was about 146.5 mAh/g (@0.1C), a Coulombic efficiency of 96.51%. and an excellent rate capability of 69.28% @1C.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 5
2-1 固態電解質 5
2-1-1 無機陶瓷固態電解質 5
2-1-2 複合型固態電解質 9
2-1-3 傳導機制 14
2-2 無機陶瓷固態電解質Li7La3Zr2O12的發展 17
2-2-1 Li7La3Zr2O12結構與分析 20
2-2-2 Li7La3Zr2O12元素摻雜 22
2-3 無機陶瓷固態電解質Li7La3Zr2O12於鋰電池的應用 35
2-3-1 錠狀固態電解質(Pellet) 35
2-3-2 複合型固態電解質(Hybrid) 40
第三章 實驗方法與步驟 57
3-1 化學藥品及儀器清單 57
3-2 實驗流程與架構 59
3-2-1 Li7La3Zr2O12固態電解質粉末製備 59
3-2-2 鈕扣型電池元件製備與組裝 60
3-2-2-1 工作電極製備 60
3-2-2-2 固態電解質薄膜製備 60
3-2-2-3 鈕扣型電池組裝 61
3-3 材料分析與鑑定 62
3-3-1 X光繞射分析儀 (X-Ray diffraction, XRD) 62
3-3-2 場發式掃描電子顯微鏡 (Field Emission Gun Scanning Electron Microscope, FEI, Inspect F50) 62
3-3-3 動態光散射粒徑分析儀 (Dynamic Light Scattering, DLS) 62
3-3-4 線性掃描伏安法 (Linear Scan Voltammetry, LSV) 63
3-3-5 計時電位法 (Chronopotentimetry, CP ) 63
3-3-6 交流阻抗分析 (Electrochemical Impedance Spectroscopy, EIS) 64
3-3-7 循環伏安法 (Cyclic voltammetry, CV) 64
3-3-8 光學顯微鏡 (Optical microscope, OM) 64
3-3-9 熱重量分析 (Thermal gravity analysis, TGA) 65
第四章 結果與討論 66
4-1 不同摻雜對Li7La3Zr2O12之影響 66
4-1-1 結晶結構分析 66
4-1-2 形貌觀察 69
4-2 複合型固態電解質薄膜的最佳參數 74
4-2-1 高分子與鋰鹽比例的影響 75
4-2-2 固態電解質粉末含量的影響 84
4-2-3 固態電解質薄膜厚度的影響 95
4-3 不同摻雜Li7La3Zr2O12固態電解質之影響 102
4-3-1 不同摻雜Li7La3Zr2O12之薄膜比較 102
4-3-2 最優化參數的其他性質 118
第五章 結論 122
第六章 參考文獻 124
第七章 附錄 141
第六章 參考文獻
1. Henderson, W. A., Glyme−Lithium Salt Phase Behavior. The Journal of Physical Chemistry B 2006, 110 (26), 13177-13183.
2. Whittingham, M. S., History, Evolution, and Future Status of Energy Storage. Proceedings of the IEEE 2012, 100 (Special Centennial Issue), 1518-1534.
3. Zhang, P.; Liu, Y.; Tian, B.; Luo, Y.; Zhang, J., Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today 2017, 281, 181-188.
4. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9).
5. Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M., Recent Advances in Electrolytes for Lithium-Sulfur Batteries. Advanced Energy Materials 2015, 5 (16).
6. Quartarone, E.; Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemcial Society Reviews 2011, 40 (5), 2525-40.
7. Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P. K.; Guo, X.; Di, Z.; Wang, X.; Li, H., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.
8. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4).
9. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
10. Judez, X.; Eshetu, G. G.; Li, C.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M., Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule 2018, 2 (11), 2208-2224.
11. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A., Fast Na+-ion transport in skeleton structures. Materials Research Bulletin 1976, 11 (2), 203-220.
12. Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V., An all-solid state NASICON sodium battery operating at 200 °C. Journal of Power Sources 2014, 247, 975-980.
13. El-Shinawi, H.; Regoutz, A.; Payne, D. J.; Cussen, E. J.; Corr, S. A., NASICON LiM2(PO4)3 electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. Journal of Materials Chemistry A 2018, 6 (13), 5296-5303.
14. Masquelier, C.; Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chemical Reviews 2013, 113 (8), 6552-91.
15. Aono, H., Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. Journal of The Electrochemical Society 1990, 137 (4), 1023.
16. Bi, K.; Zhao, S.-X.; Huang, C.; Nan, C.-W., Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O. Journal of Power Sources 2018, 389, 240-248.
17. Ren, Y.; Chen, K.; Chen, R.; Liu, T.; Zhang, Y.; Nan, C.-W.; Vyas, B., Oxide Electrolytes for Lithium Batteries. Journal of the American Ceramic Society 2015, 98 (12), 3603-3623.
18. Latie, L.; Villeneuve, G.; Conte, D.; Le Flem, G., Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln = La, Nd). Journal of Solid State Chemistry 1984, 51 (3), 293-299.
19. Kawai, H., Lithium Ion Conductivity of A-Site Deficient Perovskite Solid Solution La[0.67−x]Li[3x]TiO[3]. Journal of The Electrochemical Society 1994, 141 (7), L78.
20. Takada, K., Progress and prospective of solid-state lithium batteries. Acta Materialia 2013, 61 (3), 759-770.
21. Yao, X.; Huang, B.; Yin, J.; Peng, G.; Huang, Z.; Gao, C.; Liu, D.; Xu, X., All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B 2016, 25 (1).
22. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. Inorganic Chemistry 2011, 50 (3), 1089-97.
23. Meyer, W. H., Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials 1998, 10 (6), 439-448.
24. Scrosati, B.; Vincent, C. A., Polymer Electrolytes: The Key to Lithium Polymer Batteries. MRS Bulletin 2000, 25 (3), 28-30.
25. Weston, J. E.; Steele, B. C. H., Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7 (1), 75-79.
26. Manuel Stephan, A.; Nahm, K. S., Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47 (16), 5952-5964.
27. Kumar, B.; Rodrigues, S. J., Poly(ethylene oxide)-Based Composite Electrolytes: Crystalline ⇌ Amorphous Transition. Journal of The Electrochemical Society 2001, 148 (12).
28. Kumar, B.; Scanlon, L. G.; Spry, R. J., On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. Journal of Power Sources 2001, 96 (2), 337-342.
29. Yamada, H.; Bhattacharyya, A. J.; Maier, J., Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina. Advanced Functional Materials 2006, 16 (4), 525-530.
30. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition in English 2008, 47 (16), 2930-46.
31. Maier, J., Ionic conduction in space charge regions. Progress in Solid State Chemistry 1995, 23 (3), 171-263.
32. Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y. Y.; Chan, C. K., Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. ACS Applied Materials & Interfaces 2017, 9 (26), 21773-21780.
33. Zhai, H.; Xu, P.; Ning, M.; Cheng, Q.; Mandal, J.; Yang, Y., A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. Nano Letters 2017, 17 (5), 3182-3187.
34. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
35. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 2010, 5 (10), 722-6.
36. Lim, M.-Y.; Kim, H. J.; Baek, S. J.; Kim, K. Y.; Lee, S.-S.; Lee, J.-C., Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 2014, 77, 366-378.
37. Shim, J.; Kim, D.-G.; Kim, H. J.; Lee, J. H.; Baik, J.-H.; Lee, J.-C., Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. Journal of Materials Chemistry A 2014, 2 (34), 13873-13883.
38. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7 (4), 2898-2926.
39. Yuan, M.; Erdman, J.; Tang, C.; Ardebili, H., High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Advances. 2014, 4 (103), 59637-59642.
40. Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J.; Bruce, P. G., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science 2018, 11 (1), 185-201.
41. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
42. Long, L.; Wang, S.; Xiao, M.; Meng, Y., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
43. Zaman, W.; Hortance, N.; Dixit, M. B.; De Andrade, V.; Hatzell, K. B., Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries. Journal of Materials Chemistry A 2019, 7 (41), 23914-23921.
44. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry 2019, 7, 522.
45. Miara, L. J.; Richards, W. D.; Wang, Y. E.; Ceder, G., First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets. Chemistry of Materials 2015, 27 (11), 4040-4047.
46. Deng, F.; Wu, Y.; Tang, W.; Song, S.; Wen, Z.; Kotobuki, M.; Lu, L.; Yao, J.; Hu, N.; Molenda, J., Conformal, nanoscale γ-Al2O3 coating of garnet conductors for solid-state lithium batteries. Solid State Ionics 2019, 342.
47. Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources 2014, 248, 642-646.
48. Allen, J. L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources 2012, 206, 315-319.
49. Li, Y.; Cao, Y.; Guo, X., Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ionics 2013, 253, 76-80.
50. Tian, Y.; Ding, F.; Zhong, H.; Liu, C.; He, Y.-B.; Liu, J.; Liu, X.; Xu, Q., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Materials 2018, 14, 49-57.
51. Zhang, Z.; Zhang, L.; Yu, C.; Yan, X.; Xu, B.; Wang, L.-m., Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering. Electrochimica Acta 2018, 289, 254-263.
52. Ren, Y.; Deng, H.; Chen, R.; Shen, Y.; Lin, Y.; Nan, C.-W., Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. Journal of the European Ceramic Society 2015, 35 (2), 561-572.
53. Xu, H.; Li, Y.; Zhou, A.; Wu, N.; Xin, S.; Li, Z.; Goodenough, J. B., Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 degrees C. Nano Letters 2018, 18 (11), 7414-7418.
54. Chen, Y.; He, M.; Zhao, N.; Fu, J.; Huo, H.; Zhang, T.; Li, Y.; Xu, F.; Guo, X., Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. Journal of Power Sources 2019, 420, 15-21.
55. Huang, Z.; Liu, K.; Chen, L.; Lu, Y.; Li, Y.; Wang, C.-A., Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. International Journal of Applied Ceramic Technology 2017, 14 (5), 921-927.
56. Lou, J.; Wang, G.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, J.; Zhang, W., Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. Journal of Power Sources 2020, 448.
57. Huang, X.; Xiu, T.; Badding, M. E.; Wen, Z., Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceramics International 2018, 44 (5), 5660-5667.
58. Zhao, P.; Cao, G.; Jin, Z.; Ming, H.; Wen, Y.; Xu, Y.; Zhu, X.; Xiang, Y.; Zhang, S., Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12. Materials & Design 2018, 139, 65-71.
59. Botros, M.; Djenadic, R.; Clemens, O.; Möller, M.; Hahn, H., Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. Journal of Power Sources 2016, 309, 108-115.
60. Zhao, Y.; Yan, J.; Cai, W.; Lai, Y.; Song, J.; Yu, J.; Ding, B., Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Materials 2019, 23, 306-313.
61. Zheng, D.; Zhang, J.; Wang, Q.; Pan, X.; Wang, J.; Guan, W.; Yang, J., Synthesis and characterization of Li7La3Zr2O12 via a novel solid-liquid route. Solid State Ionics 2020, 345.
62. Hao, S.; Zhang, H.; Yao, W.; Lin, J., Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte. Journal of Power Sources 2018, 393, 128-134.
63. Pan, X. X.; Wang, J. X.; Chang, X. H.; Li, Y. D.; Guan, W. B., A novel solid-liquid route for synthesizing cubic garnet Al-substituted Li7La3Zr2O12. Solid State Ionics 2018, 317, 1-6.
64. Xiang, X.; Liu, Y.; Chen, F.; Yang, W.; Yang, J.; Ma, X.; Chen, D.; Su, K.; Shen, Q.; Zhang, L., Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12. Journal of the European Ceramic Society 2020, 40 (8), 3065-3071.
65. Su, J.; Huang, X.; Song, Z.; Xiu, T.; Badding, M. E.; Jin, J.; Wen, Z., Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceramics International 2019, 45 (12), 14991-14996.
66. Zagórski, J.; López del Amo, J. M.; Cordill, M. J.; Aguesse, F.; Buannic, L.; Llordés, A., Garnet–Polymer Composite Electrolytes: New Insights on Local Li-Ion Dynamics and Electrodeposition Stability with Li Metal Anodes. ACS Applied Energy Materials 2019, 2 (3), 1734-1746.
67. Qin, S.; Zhu, X.; Jiang, Y.; Ling, M. e.; Hu, Z.; Zhu, J., Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Applied Physics Letters 2018, 112 (11).
68. Wolfenstine, J.; Ratchford, J.; Rangasamy, E.; Sakamoto, J.; Allen, J. L., Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Materials Chemistry and Physics 2012, 134 (2-3), 571-575.
69. Yang, S. H.; Kim, M. Y.; Kim, D. H.; Jung, H. Y.; Ryu, H. M.; Han, J. H.; Lee, M. S.; Kim, H.-S., Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries. Journal of Industrial and Engineering Chemistry 2017, 56, 422-427.
70. Yi, M.; Liu, T.; Li, J.; Wang, C.; Mo, Y.; Wang, X.; Wei, Y., High Li-ion conductivity of Al-free Li7-3xGaxLa3Zr2O12 solid electrolyte prepared by liquid-phase sintering. Journal of Solid State Electrochemistry 2019, 23 (4), 1249-1256.
71. Zhao, P.; Xiang, Y.; Wen, Y.; Li, M.; Zhu, X.; Zhao, S.; Jin, Z.; Ming, H.; Cao, G., Garnet-like Li7-xLa3Zr2-xNbxO12 (x = 0−0.7) solid state electrolytes enhanced by self-consolidation strategy. Journal of the European Ceramic Society 2018, 38 (16), 5454-5462.
72. Huang, X.; Song, Z.; Xiu, T.; Badding, M. E.; Wen, Z., Sintering, micro-structure and Li+ conductivity of Li7−xLa3Zr2−xNbxO12/MgO (x = 0.2–0.7) Li-Garnet composite ceramics. Ceramics International 2019, 45 (1), 56-63.
73. Li, Y.; Wang, Z.; Cao, Y.; Du, F.; Chen, C.; Cui, Z.; Guo, X., W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries. Electrochimica Acta 2015, 180, 37-42.
74. Rettenwander, D.; Welzl, A.; Cheng, L.; Fleig, J.; Musso, M.; Suard, E.; Doeff, M. M.; Redhammer, G. J.; Amthauer, G., Synthesis, Crystal Chemistry, and Electrochemical Properties of Li(7-2x)La3Zr(2-x)Mo(x)O12 (x = 0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr(4+) by Mo(6+). Inorganic Chemistry 2015, 54 (21), 10440-9.
75. Liu, X.; Li, Y.; Yang, T.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G.; Li, Z., High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12 (x=0-0.3) ceramics by sol-gel method. Journal of the American Ceramic Society 2017, 100 (4), 1527-1533.
76. Song, S.; Yan, B.; Zheng, F.; Duong, H. M.; Lu, L., Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. Solid State Ionics 2014, 268, 135-139.
77. Shao, C.; Yu, Z.; Liu, H.; Zheng, Z.; Sun, N.; Diao, C., Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochimica Acta 2017, 225, 345-349.
78. Wakudkar, P.; Deshpande, A. V., Enhancement of ionic conductivity by addition of LiAlO2 in Li6.6La3Zr1.6Sb0.4O12 for lithium ion battery. Solid State Ionics 2020, 345.
79. Wang, X.; Liu, J.; Yin, R.; Xu, Y.; Cui, Y.; Zhao, L.; Yu, X., High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2-xSmxO12 (x = 0–0.1) ceramics. Materials Letters 2018, 231, 43-46.
80. Amardeep; Kobi, S.; Mukhopadhyay, A., Mg-doping towards enhancing the composition-phase-structural stability of Li-La-zirconate based cubic garnet upon exposure to air. Scripta Materialia 2019, 162, 214-218.
81. Luo, Y.; Li, X.; Zhang, Y.; Ge, L.; Chen, H.; Guo, L., Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochimica Acta 2019, 294, 217-225.
82. Luo, Y.; Zhang, Y.; Zhang, Q.; Zheng, Y.; Chen, H.; Guo, L., Effect of dual doping on the structure and performance of garnet-type Li7La3Zr2O12 ceramic electrolytes for solid-state lithium-ion batteries. Ceramics International 2019, 45 (14), 17874-17883.
83. Wu, J. F.; Pang, W. K.; Peterson, V. K.; Wei, L.; Guo, X., Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. ACS Applied Materials & Interfaces 2017, 9 (14), 12461-12468.
84. Yang, T.; Li, Y.; Wu, W.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G., The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceramics International 2018, 44 (2), 1538-1544.
85. Cao, Z.; Cao, X.; Liu, X.; He, W.; Gao, Y.; Liu, J.; Zeng, J., Effect of Sb-Ba codoping on the ionic conductivity of Li7La3Zr2O12 ceramic. Ceramics International 2015, 41 (5), 6232-6236.
86. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry 2009, 182 (8), 2046-2052.
87. Murugan, R.; Thangadurai, V.; Weppner, W., Schnelle Lithiumionenleitung in granatartigem Li7La3Zr2O12. Angewandte Chemie 2007, 119 (41), 7925-7928.
88. Huang, M.; Liu, T.; Deng, Y.; Geng, H.; Shen, Y.; Lin, Y.; Nan, C.-W., Effect of sintering temperature on structure and ionic conductivity of Li7−xLa3Zr2O12−0.5x (x=0.5~0.7) ceramics. Solid State Ionics 2011, 204-205, 41-45.
89. Shao, C.; Liu, H.; Yu, Z.; Zheng, Z.; Sun, N.; Diao, C., Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method. Solid State Ionics 2016, 287, 13-16.
90. Cao, Y.; Li, Y.-Q.; Guo, X.-X., Densification and lithium ion conductivity of garnet-type Li7−xLa3Zr2−xTaxO12(x= 0.25) solid electrolytes. Chinese Physics B 2013, 22 (7).
91. Nakayama, M.; Kotobuki, M.; Munakata, H.; Nogami, M.; Kanamura, K., First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Physical Chemistry Chemical Physics 2012, 14 (28), 10008-14.
92. Wang, Y.; Lai, W., High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions. Electrochemical and Solid-State Letters 2012, 15 (5).
93. Kotobuki, M.; Kanamura, K.; Sato, Y.; Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources 2011, 196 (18), 7750-7754.
94. Rangasamy, E.; Wolfenstine, J.; Sakamoto, J., The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 2012, 206, 28-32.
95. Düvel, A.; Kuhn, A.; Robben, L.; Wilkening, M.; Heitjans, P., Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry. The Journal of Physical Chemistry C 2012, 116 (29), 15192-15202.
96. Bernuy-Lopez, C.; Manalastas, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A., Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Chemistry of Materials 2014, 26 (12), 3610-3617.
97. Wu, J. F.; Chen, E. Y.; Yu, Y.; Liu, L.; Wu, Y.; Pang, W. K.; Peterson, V. K.; Guo, X., Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. ACS Applied Materials & Interfaces 2017, 9 (2), 1542-1552.
98. Jiang, Y.; Zhu, X.; Qin, S.; Ling, M. e.; Zhu, J., Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics 2017, 300, 73-77.
99. Dhivya, L.; Murugan, R., Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. ACS Applied Materials & Interfaces 2014, 6 (20), 17606-15.
100. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J., The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. Journal of Power Sources 2013, 230, 261-266.
101. Lu, Y.; Meng, X.; Alonso, J. A.; Fernandez-Diaz, M. T.; Sun, C., Effects of Fluorine Doping on Structural and Electrochemical Properties of Li6.25Ga0.25La3Zr2O12 as Electrolytes for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2019, 11 (2), 2042-2049.
102. Tenhaeff, W. E.; Rangasamy, E.; Wang, Y.; Sokolov, A. P.; Wolfenstine, J.; Sakamoto, J.; Dudney, N. J., Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes. ChemElectroChem 2014, 1 (2), 375-378.
103. Cheng, L.; Chen, W.; Kunz, M.; Persson, K.; Tamura, N.; Chen, G.; Doeff, M., Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Applied Materials & Interfaces 2015, 7 (3), 2073-81.
104. Tang, Y.; Zhang, Q.; Luo, Z.; Liu, P.; Lu, A., Effects of Li2O-Al2 O3 -SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2 O12 solid electrolyte. Materials Letters 2017, 193, 251-254.
105. Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, Y.; Yoshida, T., Compatibility of Li[7]La[3]Zr[2]O[12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode. Journal of The Electrochemical Society 2010, 157 (10), A1076.
106.Tan, J.; Tiwari, A., Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries. Electrochemical and Solid-State Letters 2012, 15 (3).
107.Ahn, C.-W.; Choi, J.-J.; Ryu, J.; Hahn, B.-D.; Kim, J.-W.; Yoon, W.-H.; Choi, J.-H.; Lee, J.-S.; Park, D.-S., Electrochemical properties of Li7La3Zr2O12-based solid state battery. Journal of Power Sources 2014, 272, 554-558.
108.Park, K.; Yu, B.-C.; Jung, J.-W.; Li, Y.; Zhou, W.; Gao, H.; Son, S.; Goodenough, J. B., Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chemistry of Materials 2016, 28 (21), 8051-8059.
109.van den Broek, J.; Afyon, S.; Rupp, J. L. M., Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors. Advanced Energy Materials 2016, 6 (19).
110.Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Applied Materials & Interfaces 2016, 8 (16), 10617-26.
111. Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lu, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A.; Goodenough, J. B., Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angewandte Chemie International Edition in English 2017, 56 (3), 753-756.
112.Zhang, W.; Sun, C., Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. Journal of Physics and Chemistry of Solids 2019, 135.
113.Kim, H. W.; Manikandan, P.; Lim, Y. J.; Kim, J. H.; Nam, S.-c.; Kim, Y., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (43), 17025-17032.
114.Zha, W.; Xu, Y.; Chen, F.; Shen, Q.; Zhang, L., Cathode/electrolyte interface engineering via wet coating and hot pressing for all-solid-state lithium battery. Solid State Ionics 2019, 330, 54-59.
115.Karthik, K.; Murugan, R., Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. Journal of Solid State Electrochemistry 2018, 22 (10), 2989-2998.
116.Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y. R., An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications. Advanced Materials 2003, 15 (23), 2027-2032.
117.Jeddi, K.; Ghaznavi, M.; Chen, P., A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries. Journal of Materials Chemistry A 2013, 1 (8).
118.Huo, H.; Sun, J.; chen, C.; Meng, X.; He, M.; Zhao, N.; Guo, X., Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries. Journal of Power Sources 2018, 383, 150-156.
119.Zhang, X.; Xu, B.-Q.; Lin, Y.-H.; Shen, Y.; Li, L.; Nan, C.-W., Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics 2018, 327, 32-38.
120.Liang, Y. F.; Deng, S. J.; Xia, Y.; Wang, X. L.; Xia, X. H.; Wu, J. B.; Gu, C. D.; Tu, J. P., A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Materials Research Bulletin 2018, 102, 412-417.
121.Li, Y.; Wong, K. W.; Ng, K. M., Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries. Chemical Communications 2016, 52 (23), 4369-72.
122.Tan, S.-J.; Zeng, X.-X.; Ma, Q.; Wu, X.-W.; Guo, Y.-G., Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews 2018, 1 (2), 113-138.
123.Zhang, W.; Nie, J.; Li, F.; Wang, Z. L.; Sun, C., A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413-419.
124.Choi, J.-H.; Lee, C.-H.; Yu, J.-H.; Doh, C.-H.; Lee, S.-M., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources 2015, 274, 458-463.
125.Chen, R. J.; Zhang, Y. B.; Liu, T.; Xu, B. Q.; Lin, Y. H.; Nan, C. W.; Shen, Y., Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS Applied Materials & Interfaces 2017, 9 (11), 9654-9661.
126.Cheng, S. H.-S.; He, K.-Q.; Liu, Y.; Zha, J.-W.; Kamruzzaman, M.; Ma, R. L.-W.; Dang, Z.-M.; Li, R. K. Y.; Chung, C. Y., Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta 2017, 253, 430-438.
127.Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
128.Cha, J. H.; Didwal, P. N.; Kim, J. M.; Chang, D. R.; Park, C.-J., Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether. Journal of Membrane Science 2020, 595.
129.Fan, R.; Liu, C.; He, K.; Ho-Sum Cheng, S.; Chen, D.; Liao, C.; Li, R. K. Y.; Tang, J.; Lu, Z., Versatile Strategy for Realizing Flexible Room-Temperature All-Solid-State Battery through a Synergistic Combination of Salt Affluent PEO and Li6.75La3Zr1.75Ta0.25O12 Nanofibers. ACS Applied Materials & Interfaces 2020, 12 (6), 7222-7231.
130.Jung, Y.-C.; Kim, S.-K.; Kim, M.-S.; Lee, J.-H.; Han, M.-S.; Kim, D.-H.; Shin, W.-C.; Ue, M.; Kim, D.-W., Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. Journal of Power Sources 2015, 293, 675-683.
131.Huo, H.; Zhao, N.; Sun, J.; Du, F.; Li, Y.; Guo, X., Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources 2017, 372, 1-7.
132.Kim, D. H.; Kim, M. Y.; Yang, S. H.; Ryu, H. M.; Jung, H. Y.; Ban, H.-J.; Park, S.-J.; Lim, J. S.; Kim, H.-S., Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. Journal of Industrial and Engineering Chemistry 2019, 71, 445-451.
133.Huang, Z.; Pang, W.; Liang, P.; Jin, Z.; Grundish, N.; Li, Y.; Wang, C.-A., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A 2019, 7 (27), 16425-16436.
134.Li, Y.; Zhang, W.; Dou, Q.; Wong, K. W.; Ng, K. M., Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A 2019, 7 (7), 3391-3398.
135.Chen, H.; Liu, Q. Y.; Jing, M. X.; Chen, F.; Yuan, W. Y.; Ju, B. W.; Tu, F. Y.; Shen, X. Q.; Qin, S. B., Improved Interface Stability and Room-Temperature Performance of Solid-State Lithium Batteries by Integrating Cathode/Electrolyte and Graphite Coating. ACS Applied Materials & Interfaces 2020, 12 (13), 15120-15127.
136.Zhang, Z.; Huang, Y.; Gao, H.; Huang, J.; Li, C.; Liu, P., An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance. Ceramics International 2020, 46 (8), 11397-11405.
137.Peng, X.; Huang, K.; Song, S.; Wu, F.; Xiang, Y.; Zhang, X., Garnet‐polymer composite electrolytes with high Li+ conductivity and transference number via well‐fused grain boundaries in micro‐porous frameworks. ChemElectroChem 2020.
138.Zhang, Q.; Zhao, X.; Duan, L.; Shen, H.; Liu, R., Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry 2020, 392.
139.Yang, C.; Li, Q.; Xia, Y.; Lv, K.; Li, M., Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Applied Surface Science 2019, 464, 388-395.
140.Shang, H.; Huang, S.; Li, H.; Li, M.; Zhao, S.; Wang, J.; Ai, Z.; Zhang, L., Dual-site activation enhanced photocatalytic removal of no with Au/CeO2. Chemical Engineering Journal 2020, 386.
141.Yang, X.; Zhang, Y.; Wang, Y.; Xin, C.; Zhang, P.; Liu, D.; Mamba, B. B.; Kefeni, K. K.; Kuvarega, A. T.; Gui, J., Hollow β-Bi2O3@CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis. Chemical Engineering Journal 2020, 387.
142.George, S. E.; George, M.; Alex, J.; Joy, L. K.; Aravind, A.; Sajan, D.; Thakur, A.; Hussain, S.; Vinitha, G., Nonlinear optical and photocatalytic dye degradation of Co doped CeO2 nanostructures synthesized through a modified combustion technique. Ceramics International 2020.
143.Fullerton-Shirey, S. K.; Maranas, J. K., Structure and Mobility of PEO/LiClO4 Solid Polymer Electrolytes Filled with Al2O3 Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (20), 9196-9206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔