(3.236.214.19) 您好!臺灣時間:2021/05/07 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佳宏
研究生(外文):Chia-Hung Chen
論文名稱:澱粉樣胜肽β寡聚體在脂質膜上形成孔道之濃度測量
論文名稱(外文):The Measurement of Critical Concentration to Form Amyloid Pore in Membrane by Amyloid Beta Oligomer
指導教授:陳儀帆
指導教授(外文):Yi-Fan Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:99
中文關鍵詞:β-澱粉樣胜肽寡聚體離子通道濃度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
β-澱粉樣胜肽寡聚體形成之離子通道被認為是誘發阿茲海默症的重要原因。此種類型之離子通道會破壞細胞內之鈣離子平衡,並導致神經細胞死亡。離子通道的生成取決於胜肽的濃度以及細胞膜本身之不飽和程度。目前仍沒有研究去測量胜肽形成離子通道的絕對濃度,然而測量此濃度卻是重要的。因為β-澱粉樣胜肽寡聚體較容易與不飽和度高的細胞膜結合並形成孔道。
大腦灰質之異常一直以來被視為是阿茲海默症的最主要病因,然而近期有關治療大腦灰質之藥物開發以及實驗研究都沒辦法有效的治癒或者是延緩阿茲海默症的症狀,所以有另一部份學者認為大腦白質之異常是誘發阿茲海默症之另一種重要病因,因大腦白質之細胞膜含有最高的不飽和度,所以我們想從此研究中以β-澱粉樣胜肽寡聚體誘發孔洞形成之觀點來解釋大腦白質異常是阿茲海默症中的一種重要病因。
在此研究中,我們發現形成離子通道所需之絕對濃度在不飽和度較高的細胞膜中比較低,且我們同時發現當加入β-澱粉樣胜肽寡聚體時細胞膜之結構會有明顯改變。最終結果闡明了β-澱粉樣胜肽寡聚體誘發孔洞形成可能是大腦白質異常之中的分子機制以及是阿茲海默症的一種重要病因。
Formation of the ion channels on neuronal membranes by the amyloid beta (Aβ) oligomers is recently considered as the potential pathogenic origin of the Alzheimer’s disease (AD). These ion channels will break the balance of calcium ions across the membranes and thereby kill the neurons. The pore formation process is concentration- and membrane composition-dependent. But none of the existing studies systematically measured the critical concentrations and their composition dependence for the ion channel formation by the Aβ oligomers. Given that the abnormality on the white matter of human brains is believed to be a key factor in the AD pathogenesis and that the neuronal membranes in the white matter contain the lipids of higher unsaturation degrees, figuring out how the critical concentration of the ion channel formation correlates with the membrane composition may elucidate the molecular mechanism underlying the pathogenic involvement in AD of the white matter. In this study, we used lipids with different unsaturation degrees to construct the model membrane systems and to mimic the different unsaturation degrees between the white matter and grey matter of human brains. We found that the critical concentration for the ion channel formation decreased with increasing the unsaturation degree of the membranes. Moreover, the structural variation of the membranes arising from the Aβ-membrane interaction differed when the membrane composition was different.
TABLE OF CONTENT
摘要 I
Abstracts II
致謝 III
TABLE OF CONTENT IV
TABLE OF FIGURES VI
CHAPTER 1 1
1-1 Alzheimer’s disease 1
1-2 Amyloid beta peptide (AβP) 2
1-3 Cell membrane and model membrane 5
1-3-1 Lipid molecules and unsaturation degree 5
1-3-2 Lipid composition of gray matter and white matter 7
1-3-3 Model membrane 11
1-4 Motivation 12
CHAPTER 2 Experimental 13
2-1 Materials 13
2-2 Instruments 17
2-2-1 Small angle X-ray scattering (SAXS) and data analysis 17
2-2-2 Small angle neutron scattering (SANS) 18
2-2-3 Fluorescence spectroscopy 21
2-2-4 Fura-2 fluorescence 21
2-2-5 Ultraviolet-visible spectroscopy 22
2-2-6 Dynamic light scattering (DLS) 23
2-3 Sample preparation 24
2-3-1 Buffer solution 24
2-3-2 Amyloid beta preparation 25
2-3-3 Vesicles preparation 26
2-3-4 Fura-2 leakage experiment 28
2-4 Data analysis 29
2-4-1 SAXS data analysis 29
2-4-2 SANS data analysis 32
2-4-3 Leakage experiment data analysis 33
CHAPRER 3 Result 33
3-1 Determine the particle size of the vesicles 34
3-2 Determination of peptide concentration 40
3-3 Vesicle integrity lost induce by interaction between peptide and membrane 40
3-4 Vesicle morphology change after added the amyloid beta peptide 51
CHAPTER 4 DISCUSSION 70
CHAPTER 5 CONCLUSION 74
References 76
APPENDIX 81
References
[1] Finder, Verena H. "Alzheimer's disease: a general introduction and pathomechanism." Journal of Alzheimer's Disease 22 (2010): 5-19.
[2] Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA "Multiple isoforms of human microtubule associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease." Neuron 3 (1989): 519-526.
[3] Jang, Hyunbum, et al. "Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane." Journal of Chemical Theory and Computation 9 (2013): 822-833.
[4] Khondker, Adree, Richard J. Alsop, and Maikel C. Rheinstädter. "Membrane-accelerated amyloid-β aggregation and formation of cross-β sheets." Membranes 7 (2017): 49-68.
[5] Spillantini MG, Bird TD, Ghetti B "Frontotemporaldementia and Parkinsonism linked to chromosome 17: A new group of tauopathies." Brain Pathol 8 (1998): 387-402.
[6] Tjernberg, Lars O., et al. "A molecular model of Alzheimer amyloid β-peptide fibril formation." Journal of Biological Chemistry 274 (1999): 619-625.
[7] Tjernberg, Lars O., et al. "Controlling amyloid β-peptide fibril formation with protease-stable ligands." Journal of Biological Chemistry 272 (1997): 601-605.

[8] Selkoe, Dennis J. "Resolving controversies on the path to Alzheimer's therapeutics." Nature Medicine 17 (2011): 60-65.
[9] Holmes, Clive, et al. "Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial." The Lancet 372 (2008): 216-223.
[10] LaFerla, Frank M., Kim N. Green, and Salvatore Oddo. "Intracellular amyloid-β in Alzheimer's disease." Nature Reviews Neuroscience 8 (2007): 499-509.
[11] Kayed, Rakez, et al. "Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases." Journal of Biological Chemistry 279 (2004): 363-366.
[12] Virchow, Rud. "Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose." Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 6 (1854): 135-138.
[13] Cárdenas-Aguayo, M. del C., et al. "Physiological role of amyloid beta in neural cells: the cellular trophic activity." Neurochemistry (2014): 257-281.
[14] Wong, Pamela T., et al. "Amyloid-β membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity." Journal of Molecular Biology 386 (2009): 81-96.


[15] Butterfield, Sara M., and Hilal A. Lashuel. "Amyloidogenic protein–membrane interactions: mechanistic insight from model systems." Angewandte Chemie International Edition 49 (2010): 5628-5654.
[16] Quist, Arjan, et al. "Amyloid ion channels: a common structural link for protein-misfolding disease." Proceedings of the National Academy of Sciences 102 (2005): 427-432.
[17] Kagan, B. L., R. Azimov, and R. Azimova. "Amyloid peptide channels." The Journal of membrane biology (2004): 1-10.
[18] Sciacca, Michele FM, et al. "Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation." Biophysical Journal 103 (2012): 702-710.
[19] Lashuel, Hilal A., and Peter T. Lansbury. "Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?." Quarterly Reviews of Biophysics 39 (2006): 167-201
[20] Hirakura, Yutaka, Meng‐Chin Lin, and Bruce L. Kagan. "Alzheimer amyloid Aβ1–42 channels: effects of solvent, pH, and Congo Red." Journal of Neuroscience Research 57 (1999): 458-466.
[21] Sezgin, Erdinc, et al. "The mystery of membrane organization: composition, regulation and roles of lipid rafts." Nature reviews Molecular Cell Biology 18 (2017): 361-375.

[22] Belhocine, Tarik Z., and Frank S. Prato. "Transbilayer phospholipids molecular imaging." EJNMMI Research 1 (2011): 17.
[23] Jelinek, Raz, and Sofiya Kolusheva. "Membrane interactions of host-defense peptides studied in model systems." Current Protein and Peptide Science 6 (2005): 103-114.
[22] Jiang, Guangyao, et al. "The plasticity of brain gray matter and white matter following lower limb amputation." Neural Plasticity (2015).
[24] Söderberg, M., et al. "Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease." Lipids (1991): 421.
[25] Dhollander, Thijs. "Accounting for Complex Structure in Diffusion Weighted Imaging Data using Volume Fraction Representations." (2014).
[26] Thompson, Paul M., et al. "Dynamics of gray matter loss in Alzheimer's disease." Journal of Neuroscience 23 (2003): 994-1005.
[27] Rombouts, Serge ARB, et al. "Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease." Neuroscience Letters 285 (2000): 231-233.
[28] Nasrabady, Sara E., et al. "White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes." Acta Neuropathologica Communications 6 (2018): 22-32.
[29] Rose, Stephen E., et al. Journal of Neurology, Neurosurgery & Psychiatry 69 (2000): 528-530.
[30] Di Scala, Coralie, et al. "Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein." Scientific Reports 6 (2016)

[31] Chen, Fang-Yu, Ming-Tao Lee, and Huey W. Huang. "Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation." Biophysical Journal 84 (2003): 3751-3758.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔