(3.236.214.19) 您好!臺灣時間:2021/05/09 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐明偉
研究生(外文):Ming-Wei Hsu
論文名稱:以刮刀塗佈法刮塗鈣鈦礦層及電洞傳輸層 用於製備高效率鈣鈦礦太陽能電池
論文名稱(外文):Fabrication of Perovskite- and Hole-Transporting Layer by Blade Coating for High-Performance Perovskite Solar Cells
指導教授:劉青原
指導教授(外文):Ching-Yuan Liu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:80
中文關鍵詞:鈣鈦礦太陽能電池刮刀塗佈法電洞傳輸材料
外文關鍵詞:Perovskite Solar CellsBlade coatingHole-transporting materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著鈣鈦礦太陽能電池蓬勃發展,眾多海內外學者陸續投入研究製程以及材料上的改善,以提高最終的光電轉換效率,在實驗室中最常使用的製程方法為刮刀塗佈法以及旋轉塗佈法,其中刮刀塗佈法有大面積製程、快速製程以及使用較少的前驅溶液等優點。
使用溶液製程處理電洞傳輸層的過程中,若電洞傳輸材料的溶解度不好,會導致製程時成膜性不佳,無法忠實呈現材料的特性。本實驗選用兩種電洞傳輸材料,分別是溶解度好的YKP03以及溶解度差的ZYW01,探討不同製程方式與材料溶解度對成膜之後表面形態的影響;由於旋轉塗佈法無法控制基板溫度,使其只能於室溫下操作,而刮刀塗佈法則可以控制基板溫度,可依照不同的條件選擇刮刀塗佈的溫度,以溶解度好的材料YKP03來說,摻雜(doping)條件於60°C,未摻雜(doping free)條件於125°C下進行刮刀塗佈法,能獲得最佳的光伏表現;以溶解度差的電洞傳輸材料ZYW01來說,由於旋轉塗佈法無法控制基板溫度,即使溶液加熱到溶解所需的溫度,在旋轉塗佈的過程中也會因溫度下降而析出,導致成膜性不佳,元件光電轉換效率為1.22%,此時使用刮刀塗佈法,則可有效的改善此一現象,控制基板溫度使得電洞傳輸材料溶液在塗佈的過程中維持其溶解所需要的溫度,進而改善電洞傳輸層之形態,在125°C下進行刮刀塗佈法所製備之元件光電轉換效率為10.84%。
With the development of the perovskite solar cells (PSCs), many scholars have successively invested in research processes and material improvements to improve the photoelectric conversion efficiency(PCE). The most commonly used coating methods in the laboratory are blade coating and spin coating. The blade coating has advantages such as relatively fast and facile processing steps and much less precursor solution is wasted compared to spin coating
If the solubility of the hole-transporting material (HTM) is not good, it will cause the hole-transporting layer (HTL) has poor film forming properties during the solution coating process. It may lead HTMs display the property which is not reality. We choose two HTMs for the experiment. There are YKP03 and ZYW01, which solubility is good and poor. Study the influence of different coating methods and HTM solubility on the surface morphology. Spin coating method can only be operated at room temperature, because it cannot control the substrate temperature. However the blade coating method can control the temperature of substrate. According to different conditions, we can select the proper temperature for the experiment. For YKP03, a HTM with good solubility, blade coating at 60°C and 125°C for doping and doping free condition have the best film morphology. For ZYW01, a HTM with poor solubility, even if the solution is heated to the temperature required for dissolution, it will precipitate due to the temperature drop during the spin coating process. This results in poor film formation, and PCE of the device is 1.22%. At this time, blade coating method can improve this situation. The substrate is maintained at the temperature required for HTM dissolution. Improve the morphology of HTL. The PCE of device is 10.84%.
目錄
第一章 緒論 1
1-1前言 1
1-2 太陽能電池發展歷史與種類 2
1-2-1 無機太陽能電池 3
1-2-2 有機太陽能電池 3
1-2-2-1 小分子有機太陽能電池(Small-Molecule solar cells)…...4
1-2-2-2 高分子有機太陽能電池(Polymer solcar cells) ……...…..4
1-2-2-3染料敏化太陽能電池(Dye-sensitized solar cells) ………..5
1-3 文獻回顧 6
1-3-1 鈣鈦礦起源 6
1-3-2 鈣鈦礦太陽能電池發展 6
1-3-3 鈣鈦礦層及電洞傳輸層製備 7
1-3-3-1 旋轉塗佈法(Spin coating) ………………………………..7
1-3-3-2 刮刀塗佈法(Blade coating) ………………………………8
1-4 實驗動機 11
第二章 實驗方法 12
2-1 實驗藥品 12
2-2 實驗儀器 14
2-3 材料製備 15
2-3-1 二氧化鈦緻密層配製 15
2-3-2 二氧化鈦介孔層配製 15
2-3-3 鈣鈦礦溶液配製 15
2-3-4 電洞傳輸層溶液配製 16
2-4 正式(n-i-p)結構鈣鈦礦太陽能元件製作 16
2-4-1 FTO導電玻璃清洗 16
2-4-2 UV-ozone表面處理 17
2-4-3 電子傳輸層-二氧化鈦緻密層製備 17
2-4-4 電子傳輸層-二氧化鈦介孔層製備 17
2-4-5 旋轉塗佈法製備鈣鈦礦主動層 18
2-4-6 刮刀塗佈法製備鈣鈦礦主動層 19
2-4-7 旋轉塗佈法製備電洞傳輸層 20
2-4-8 刮刀塗佈法製備電洞傳輸層 20
2-4-9 蒸鍍銀電極 20
第三章 結果與討論 22
3-1基板溫度對刮塗電洞傳輸層之影響 22
3-1-1基板溫度對刮塗電洞傳輸溶液Spiro-OMeTAD之影響 22
3-1-2基板溫度對刮塗溶解性好的電洞傳輸溶液YKP03之影響 24
3-1-2-1 YKP03無摻雜(doping free) 條件電池效率表現 ……....24
3-1-2-2 YKP03無摻雜(doping free) 條件下之電池穩定性….. 26
3-1-2-3不同基板溫度下刮刀塗佈電洞傳輸層YKP03之表面形貌分析 …………………………………………………………….28
3-1-2-4 YKP03摻雜(doping) 條件電池效率表現 ……………...30
3-1-2-5 摻雜(doping)條件下之電池穩定性 …………………….32
3-1-3基板溫度對刮塗溶解性差的電洞傳輸溶液ZYW01之影響 34
3-2 刮刀與基板間隙(gap) 對刮塗電洞傳輸層之影響 37
3-3 旋轉塗佈製程與刮刀塗佈製程之比較 40
3-3-1 不同塗佈法對溶解性差的電洞傳輸溶液ZYW01之電池效率表現影響 40
3-3-2 不同塗佈法對電洞傳輸層之光電性質比較 44
3-3-2-1光激發螢光量測及分析 …………………………………44
3-3-2-2 時間解析螢光光譜(TRPL) ………………………..……47
3-3-3 不同塗佈法對電洞傳輸層之表面形貌影響 55
第四章 結論 60
參考文獻 61
[1] Peck, L., " Solar history: Alexandre Edmond Becquerellar. ". Solar Energy World Solar Panels, 2011.
[2] SOCIETY AP. April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell. 2009.
[3] Kuang, Y.; Vece, M.-D.; Rath, J.-K.; Dijk, L.; Schropp, R.-E. Rep. Prog. Phys. 2013, 10, 106502.
[4] Shockley;Queisser, H.-J. J. Appl. Phys. 1961. 32, 510-519.
[5] Kearns, D.; Calvin, M. J. Appl. Phys. 1958. 29, 8441.
[6] Tang, C.W. Appl. Phys. Lett. 1986. 48, 183.
[7] Yakimov, A.; Forrest, S.-R. Appl. Phys. Lett. 2002, 80, 1667-1669.
[8] Mutolo, K.-L.; Mayo, E.-I.; Rand, B.-P.; Forrest, S.-R.; Thompson, M.-E. J. Am. Chem. Soc. 2006, 128, 8108-8109.
[9] Tsukamoto, J.; Ohigashi, H.; Matsumura, K.; Takahashi, A. Jpn. J.Appl. Phys. 1981, 20, 127.
[10] Yu, G.; Zhang, C.; Heeger, A.-J. Appl. Phys. Lett. 1994, 64, 1540-1542.
[11] Padinger, F.; Rittberger, R.-S.; Sariciftci, N.-S. Adv. Funct. Mater. 2003. 13, 85-88.
[12] Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402-403.
[13] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-40.
[14] Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Chem. Commun. 2015, 51, 15894-15897.
[15] Chen, Y.-C.; Zhang, L.-R.; Zhang, Y.-Z.; Gao, H.-L.; Yan, H. RSC Advances 2018, 19, 10489-10508
[16] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[17] Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Sci. Rep. 2012, 2, 591.
[18] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Nature 2013, 499, 316-319.
[19] Best Research‐Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best‐research‐cell‐efficiencies.20190802.pdf (accessed: September 2019).
[20] Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F.-H.; Watkins, S.-E.; Subbiah, J.; Jones, D.-J.; Kim, D.-Y.; Vak, D. Adv. Mater. 2015, 27, 1241–1247.
[21] Barrows, A.-T.; Pearson, A.-J.; Kwak, C.-K.; Dunbar, A.-D.-F.;Buckley, A.-R.; Lidzey, D.-G. Energy Environ. Sci. 2014, 7, 2944–2950.
[22] Li, F.-M.; Bao, C.-X.; Zhu, W.-D.; Lv, B.-H.; Tu, W.-G.; Yu, T.; Yang, J.; Zhou, X.-X.; Wang, Y.; Wang, X.-Y.; Zhou, Y.; Zou, Z. J. Mater. Chem. A, 2016, 4, 11372-11380.
[23] Bag, S.; Deneault, J.-R.; Durstock, M.-F. Adv. Energy Mater. 2017, 7, 1701151.
[24] Kim, J.; Yun, J.-S.; Cho, Y.; Lee, D.-S.; Wilkinson, B.; Soufiani, A.-M.; Deng, X.; Zheng, J.; Shi, A.; Lim, S.; Chen, S.; Hameiri, Z.; Zhang, M.; Lau, C.-F.-J.; Huang, S.; Green M.-A.; Ho-Baillie, A.-W.-Y. ACS Energy Lett. 2017, 2, 978–1984.
[25] Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H. Sci. Rep. 2013, 3, 3132.
[26] Boudrioua, A.; Chakaroun, M.; Fischer, A. ”An Introduction to Organic Lasers” 2017, 49-93.
[27] Wang,G.; Liu, D.; Xiang, J.; Zhou, D.; Alameh, K.; Ding, B.; Song, Q. RSC Adv. 2016, 6, 43299-43303.
[28] Heo, J.-H.; Song, D.-H.; Hyuk, S. Adv. Mater. 2014, 26, 8179-8183.
[29] Berre, M.-L.; Chen, Y.; Baigl, D. Langmuir 2009, 25, 2554–2557
[30] Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Nat. Energy 2018, 3, 560–566
[31] Søndergaard, R.-R.; H¨osel, M.; Krebs, F.-C. J. Polym. Sci. 2013, 51, 16–34.
[32] Xie, H.; Liu, X.; Lyu, L.; Niu, D.; Wang, Q.; Huang, J.; Gao, Y. J. Phys. Chem. C 2016, 120, 215-220.
[33] Qin, C.; Matsushima, T.; Fujihara, T.; Adachi, C. Adv. Mater. 2017, 29, 1603808
[34] Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J. Energy Environ. Sci. 2015, 8, 1544–1550.
[35] Kong, W.; Wang, G.; Zheng, J.; Hu, H.; Chen, H.; Li, .; Hu, M.; Zhou, X.; Liu, C.; Chandrashekar, B.-N.; Amini, A.; Wang, J.; Xu, B.; Cheng, C. Sol. RRL 2018, 2, 1700214.
[36] Tong, S.; Wu, H.; Zhang, C.; Li, S.; Wang, C.-H.; Shen, J.-Q.; Xiao, S.; He, J.; Yang, J.-L.; Sun, J.; Gao, Y.-L. Organic Electronics 2017, 49, 347-354
[37] Kim, M.-K.; Lee, H.-S.; Pae, S.-R.; Kim, D.-J.; Lee, J.-Y.; Gereige, I.; Park, S.; Shin, B. J. Mater. Chem. A 2018, 6, 24911
[38] Wu, H.; Zhang,C.-J.; Ding, K.-X.; Wang, L.-J.; Gao, Y.-L.; Yang, J.-L. Org. Electron. 2017, 45, 302-307
[39] Wang, D; Zheng, J.-M.; Wang, X.-Z.; Gao J.-S.; Kong, W.-G.; Cheng, C.; Xu, B.-M. J. Energy Chem. 2019, 38, 207–213
[40] Qin, T.-S.;Huang, W.-C.; Kim, J.-E.; Vak, D.-J.; Forsyth, C.; McNeill, C.-R.; Cheng, Y.-B. Nano Energy 2017, 31, 210-217
[41] 國立中央大學化材所,2019年呂玲慧之碩士論文
[42] 國立中央大學化材所,2018年彭奕愷之碩士論文
[43] 國立中央大學化材所,2020年王志遠之碩士論文
電子全文 電子全文(網際網路公開日期:20250701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 設計與合成苯並咪唑衍生物及環狀化合物應用於鈣鈦礦太陽能電池之電洞傳輸材料
2. 利用銅催化直接碳-氫/碳-碘耦合反應之省步驟合成途徑製備以苯并三噻吩為主結構之電洞傳輸材料
3. 使用新合成方法製備以二苯并五噻吩為核心結構的電洞傳輸材料並應用於鈣鈦礦太陽能電池
4. 新型噻吩咪唑材料應用於鈣鈦礦太陽能電池之檢測與特性分析
5. 具有苯並咪唑衍生物之新型電洞傳輸材料在鈣鈦礦太陽能電池上應用
6. 具咪唑官能基之有機鹽類應用於鈣鈦礦太陽能電池電洞傳輸之研究
7. 以Carbazole為核心並以Amide為末端受體基團的A-D-A型分子作為電洞傳輸材料或介面層應用在鈣鈦礦太陽能電池之研究
8. 用於鈣鈦礦太陽能電池的螺旋型及 U 型電洞傳輸材料
9. 順式二苯乙烯衍生物於染料敏化太陽能電池與鈣鈦礦太陽能電池、有機電激發光二極體之應用
10. 設計並合成吡啶基噻吩並咪唑類型之電洞傳輸材料應用於鈣鈦礦太陽能電池
11. 開發具1,4-雙咔唑苯之電洞傳輸材料應用於鈣 鈦礦太陽能電池
12. 研究與合成應用於太陽能電池之新穎三聯噻吩類型電洞傳輸材料
13. 具苯酚官能基之新穎有機電洞材料應用於鈣鈦礦太陽能電池光電特性研究
14. 利用鈀催化之碳氫鍵活化/芳香環化反應快速合成以苯并三噻吩為核心結構的電洞傳輸材料並應用於鈣鈦礦太陽能電池
15. 利用反應條件最佳化之碳-氫/碳-溴合成策略快速製備以并三噻吩為核心結構之電洞傳輸材料
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔