(3.227.249.155) 您好!臺灣時間:2021/05/07 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘為傑
研究生(外文):Wei-Jie Pan
論文名稱:一維金/矽單晶異質奈米結構陣列之製備及其近紅外光感測特性之研究
指導教授:鄭紹良
指導教授(外文):Shao-Liang Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:奈米球微影術金屬輔助催化蝕刻矽單晶微奈米結構近紅外光感測器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以奈米球微影術及金屬輔助催化蝕刻法,成功地在(001)矽單晶基材上製備大面積準直排列之矽單晶奈米柱以及矽單晶奈米錐陣列,且在近紅外光波段有大幅提升光吸收之作用,可歸因於其底部仍有保留一層蜂巢狀的金薄膜。除此之外,更進一步製備正面為矽單晶奈米錐結構,背面為矽單晶金字塔結構的雙面微奈米結構。在元件的製程中,本實驗首先在含有金薄膜的矽晶奈米結構上開發具有優異近紅外光偵測性能之金/矽蕭基接面元件,並由TEM觀察在奈米結構上蒸鍍金的薄膜形貌,分別使用940 nm及1300 nm近紅外光光源照射金/矽單晶金字塔結構陣列、金/矽單晶奈米錐陣列以及金/雙面矽微奈米之蕭基光感測器,在零偏壓下量測其光響應度、偵測靈敏度及響應速度,且探討其單面粗糙化結構以及雙面粗糙化結構之元件的光轉換性質。
In this study, we successfully based on the nanosphere lithography and Au-assisted chemical etching process to fabricate large-area, vertically-aligned single crystalline silicon nanorod arrays (SiNRs) and silicon nanocone arrays (SiNCs) on (001) silicon substrate. The nanostructure exhibits high broadband absorption from visible to near-infrared (NIR) light range, and the large enhancement in NIR range can be attributed to honeycomb-like Au thin film remaining at the bottom of the SiNRs and SiNCs. In addition, we fabricate the micro/nano-structure that single crystalline SiNCs on the top-sized and pyramid structure at the rear. In the fabrication of the NIR photodetectors, we first develop Au/SiNCs Schottky junction on the Si substrate, and their morphologies are observed by TEM analysis. The produced Au/Si pyramid, Au/SiNCs and Au/SiNCs/pyramid Schottky junction NIR photodetectors are able to operate at zero external bias voltage and exhibit high responsivity, sensitivity and rapid response time to 940 nm and 1300 nm NIR light.
目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽單晶表面粗糙化結構 2
1-3 一維矽晶奈米結構 3
1-3-1 一維矽晶奈米線之製備 3
1-3-2 一維矽晶奈米錐之製備 4
1-4 金屬奈米材料特性 5
1-5 光感測元件 6
1-5-1半導體與金屬接觸理論及蕭基接面之光感測機制 6
1-5-2 紅外線光感測器 8
1-6 研究動機及目標 10
第二章 實驗步驟及儀器設備 11
2-1 實驗步驟 11
2-1-1 矽晶基材使用前處理 11
2-1-2 矽晶基材表面粗糙化 11
2-1-3 奈米球陣列模板製備 12
2-1-4 蒸鍍純金薄膜 12
2-1-5 金屬催化蝕刻法製備矽單晶奈米柱陣列 12
2-1-6 金屬催化蝕刻法製備矽單晶奈米錐陣列 12
2-1-7 濺鍍鋁金屬薄膜 13
2-1-8 製備光偵測元件 13
2-2 試片分析 13
2-2-1 掃描式電子顯微鏡 13
2-2-2 穿透式電子顯微鏡 14
2-2-3 可見光-近紅外光譜儀 14
2-2-4 近紅外光偵測系統 15
第三章 結果與討論 16
3-1 大面積隨機排列之矽單晶金字塔結構 16
3-2大面積規則有序之矽單晶奈米結構陣列 16
3-2-1 聚苯乙烯奈米球模板製備 16
3-2-2 規則有序之準直矽單晶奈米柱陣列製備 17
3-2-3 規則有序之準直矽單晶奈米錐陣列製備 18
3-3 矽單晶微奈米結構之光學性質量測分析 19
3-4 近紅外光金/矽單晶微奈米結構之偵測元件 21
3-4-1金/矽單晶微奈米結構之蕭基接面製備 21
3-4-2金/矽單晶微奈米結構之蕭基接面結構之光感測特性與探討 23
3-5 金/雙面矽單晶微奈米結構之近紅外光之偵測元件 25
3-5-1金/雙面矽單晶微奈米結構之蕭基接面製備 25
3-5-2金/雙面矽單晶微奈米之蕭基接面結構之光感測特性與探討 26
3-5-3 光偵測器之靈敏度、響應度以及響應時間 28
第四章 結論與未來展望 31
參考文獻 32
表目錄 39
圖目錄 41
參考文獻
[1] S. Ortaboy, J.P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian. "MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors". Energy & Environmental Science,10 (2017) 1505-1516.
[2] P. Lu, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, X. Chen. "Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors". Electrochemistry Communications,70 (2016) 51-55.
[3] C. Wang, F. Luo, H. Lu, B. Liu, G. Chu, B. Quan, J. Li, C. Gu, H. Li, L. Chen. "Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology". Nanoscale,9 (2017) 17241-17247.
[4] Y.C. Lai, H.C. Ho, B.W. Shih, F.Y. Tsai, C.H. Hsueh. "High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate". Applied Surface Science,439 (2018) 852-858.
[5] X. Qin, Z. Xia, Y. Wu, J. Zhou, Z. Zhang. "Enhanced light absorption in perpendicular elliptical silicon nanocone array for solar cells". Appl Opt,56 (2017) 2307-2313.
[6] G. Ma, R. Du, Y.N. Cai, C. Shen, X. Gao, Y. Zhang, F. Liu, W. Shi, W. Du, Y. Zhang. "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides". Solar Energy Materials and Solar Cells,193 (2019) 163-168.
[7] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F.P. Fengler, T. Mittmann, C. Richter, S. Slesazeck. "A Silicon Nanowire Ferroelectric Field‐Effect Transistor". Advanced Electronic Materials,6 (2020) 1901244.
[8] S. Zafar, C. D'Emic, A. Jagtiani, E. Kratschmer, X. Miao, Y. Zhu, R. Mo, N. Sosa, H. Hamann, G. Shahidi, H. Riel. "Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics". ACS Nano,12 (2018) 6577-6587.
[9] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen. "A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-Ion batteries". ACS Applied Materials & Interfaces,9 (2017) 2806-2814.
[10] A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler, S. Dörfler, F. Fauth, T. Mikolajick, W.M. Weber. "In situ raman spectroscopy on silicon nanowire anodes Integrated in lithium Ion batteries". Journal of The Electrochemical Society,166 (2019) A5378-A5385.
[11] S.A. Guerrera, A.I. Akinwande. "Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates". Nanotechnology,27 (2016) 295302.
[12] Y.M. Chang, P.H. Kao, H.M. Tai, H.W. Wang, C.M. Lin, H.Y. Lee, J.Y. Juang. "Enhanced field emission characteristics in metal-coated Si-nanocones". Phys Chem Chem Phys,15 (2013) 10761-10766.
[13] G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov, I. Andreeva, O. Ignatenko, A. Egorov, M. Rubtsova. "Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen". Biosens Bioelectron,88 (2017) 283-289.
[14] K. Wang, H. Hu, S. Lu, M. Jin, Y. Wang, T. He. "Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial". Applied Physics Letters,116 (2020).
[15] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko. "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector". ACS Applied Materials & Interfaces,9 (2017) 29234-29247.
[16] J.Q. Liu, Y. Gao, G.A. Wu, X.W. Tong, C. Xie, L.B. Luo, L. Liang, Y.C. Wu. "Silicon/perovskite core-shell heterojunctions with light-trapping effect for sensitive self-driven near-Infrared photodetectors". ACS Applied Materials & Interfaces,10 (2018) 27850-27857.
[17] C.Y. Wu, Z.Q. Pan, Y.Y. Wang, C.W. Ge, Y.Q. Yu, J.Y. Xu, L. Wang, L.B. Luo. "Core–shell silicon nanowire array–Cu nanofilm schottky junction for a sensitive self-powered near-infrared photodetector". Journal of Materials Chemistry C,4 (2016) 10804-10811.
[18] Y. Zhai, Y. Li, J. Ji, Z. Wu, Q. Wang. "Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors". ACS Applied Nano Materials,3 (2020) 149-155.
[19] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, C. Ye. "Flexible Si/PEDOT:PSS hybrid solar cells". Nano Research,8 (2015) 3141-3149.
[20] P. Campbell, M.A. Green. "Light trapping properties of pyramidally textured surfaces". Journal of Applied Physics,62 (1987) 243-259.
[21] W.C. Hsu, J.K. Tong, M.S. Branham, Y. Huang, S. Yerci, S.V. Boriskina, G. Chen. "Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells". Optics Communications,377 (2016) 52-58.
[22] W. Liu, S. Zhang, Y. Liu, X. Wang, F. Yang. "Double sided nanopyramid arrays for broad spectrum absorption enhancement in ultrathin-film solar cells". 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); 2016: IEEE.
[23] X. Tan, W. Yan, Y. Tu, C. Deng. "Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation". Opt Express,25 (2017) 14725-14731.
[24] S. Zhang, M. Liu, W. Liu, Z. Li, Y. Liu, X. Wang, F. Yang. "High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays". Journal of Optics,19 (2017).
[25] E. Yablonovitch. "Statistical ray optics". Journal of the Optical Society of America,72 (1982) 899-907.
[26] L. Guan, G. Shen, Y. Liang, F. Tan, X. Xu, X. Tan, X. Li. "Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells". Optics and Laser Technology,120 (2019).
[27] D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, S.-Q. Feng. "Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism". Physica E: Low-dimensional Systems and Nanostructures,9 (2001) 305-309.
[28] E.K. Lee, B.L. Choi, Y.D. Park, Y. Kuk, S.Y. Kwon, H.J. Kim. "Device fabrication with solid-liquid-solid grown silicon nanowires". Nanotechnology,19 (2008) 185701.
[29] J. Westwater. "Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,15 (1997).
[30] O. Gunawan, S. Guha. "Characteristics of vapor–liquid–solid grown silicon nanowire solar cells". Solar Energy Materials and Solar Cells,93 (2009) 1388-1393.
[31] R.Q. Zhang, Y. Lifshitz, S.T. Lee. "Oxide-assisted growth of semiconducting nanowires". Advanced Materials,15 (2003) 635-640.
[32] Y. Yao, F. Li, S.T. Lee. "Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts". Chemical Physics Letters,406 (2005) 381-385.
[33] M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong. "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching". The Journal of Physical Chemistry C,112 (2008) 4444-4450.
[34] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi. "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration". Nanoscale research letters,7 (2012) 663.
[35] L. Liu, F. Wu, D. Xu, N. Li, N. Lu. "Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection". Sensors and Actuators B: Chemical,255 (2018) 1401-1406.
[36] L.W. Veldhuizen, W.J.C. Vijselaar, H.A. Gatz, J. Huskens, R.E.I. Schropp. "Textured and micropillar silicon heterojunction solar cells with hot-wire deposited passivation layers". Thin Solid Films,635 (2017) 66-72.
[37] Y. Zhang, Z. Fan, W. Zhang, Q. Ma, Z. Jiang, D. Ma. "High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles". AIP Advances,8 (2018).
[38] J. Zhu, Z. Yu, G.F. Burkhard, C.M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui. "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays". Nano Lettersers,9 (2009) 279-282.
[39] Y.C. Lee, C.C. Chang, Y.Y. Chou. "Fabrication of broadband anti-reflective sub-micron structures using polystyrene sphere lithography on a Si substrate".Photonics and Nanostructures - Fundamentals and Applications,12 (2014) 16-22.
[40] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee. "A strong antireflective solar cell prepared by tapering silicon nanowires". Optics Express,18 (2010) A286-A292.
[41] H. Lin, H.Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.Y. Wong. "Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping". Journal of Materials Chemistry A,1 (2013).
[42] T. Shimizu, N. Tanaka, Y. Tada, Y. Hara, N. Nakamura, J. Taniuchi, K. Takase, T. Ito, S. Shingubara. "Fabrication of nanocone arrays by two step metal assisted chemical etching method". Microelectronic Engineering,153 (2016) 55-59.
[43] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, N. Lu. "Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching". Nanoscale,9 (2017) 449-453.
[44] M.L. Brongersma, N.J. Halas, P. Nordlander. "Plasmon-induced hot carrier science and technology". Nature Nanotechnology,10 (2015) 25-34.
[45] Y. Song, T. Liu, S. Liu, J. Huang, J. Li, C. Tian, T. Yu, Y. He, Y. Liu, Z. Zhong. "A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles". Journal of Materials Science: Materials in Electronics,31 (2020) 4696-4701.
[46] C. Clavero. "Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices". Nature Photonics,8 (2014) 95-103.
[47] W. Li, J.G. Valentine. "Harvesting the loss: surface plasmon-based hot electron photodetection". Nanophotonics,6 (2017) 177-191.
[48] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.T. Yong. "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor". Scientific Reports,6 (2016) 28190.
[49] G. Erturk Bergdahl, T. Andersson, M. Allhorn, S. Yngman, R. Timm, R. Lood. "In Vivo Detection and Absolute Quantification of a Secreted Bacterial Factor from Skin Using Molecularly Imprinted Polymers in a Surface Plasmon Resonance Biosensor for Improved Diagnostic Abilities". ACS Sensors,4 (2019) 717-725.
[50] R. Liu, Q. Wang, Q. Li, X. Yang, K. Wang, W. Nie. "Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy". Biosensors and Bioelectronics,87 (2017) 433-438.
[51] X. Yang, H. Zhong, Y. Zhu, J. Shen, C. Li. "Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays". Dalton Transactions,42 (2013) 14324-14330.
[52] Y. Li, J. Dykes, T. Gilliam, N. Chopra. "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles". Nanoscale,9 (2017) 5263-5272.
[53] S. Chakraborti, R.N. Basu, S.K. Panda. "Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection". Plasmonics,13 (2017) 1057-1080.
[54] G. Xu, R. Lu, J. Liu, H.Y. Chiu, R. Hui, J.Z. Wu. "Photodetection based on Ionic liquid gated plasmonic Ag nanoparticle/graphene nanohybrid field effect transistors". Advanced Optical Materials,2 (2014) 729-736.
[55] C. Peng, W. Wang, W. Zhang, Y. Liang, L. Zhuo. "Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination". Applied Surface Science,420 (2017) 286-295.
[56] H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang. "Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures". The Journal of Physical Chemistry C,121 (2017) 12071-12079.
[57] X. Wang, K.Q. Peng, Y. Hu, F.Q. Zhang, B. Hu, L. Li, M. Wang, X.M. Meng, S.T. Lee. "Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation". Nano Letters,14 (2014) 18-23.
[58] H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du. "Near-infrared light-driven controllable motions of gold-hollow-microcone array". ACS Applied Materials & Interfaces,11 (2019) 15927-15935.
[59] A. Roy, A. Maiti, T.K. Chini, B. Satpati. "Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced raman scattering". ACS Applied Materials & Interfaces,9 (2017) 34405-34415.
[60] J. Yin, X. Qi, L. Yang, G. Hao, J. Li, J. Zhong. "A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays". Electrochimica Acta,56 (2011) 3884-3889.
[61] J. Wu, Y. Du, C. Wang, S. Bai, T. Zhang, T. Chen, A. Hu. "Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate". Applied Surface Science,494 (2019) 583-590.
[62] P.S. Priambodo, N.R. Poespawati, D. Hartanto. Solar Cell. Solar Cells-Silicon Wafer-Based Technologies: IntechOpen; 2011.
[63] S. Parasuraman. "NOC: Fundamentals of electronic materials and devices". (2016).
[64] B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang, S. Li, X. Wang. "Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication". Nano Energy,70 (2020) 104544.
[65] B. Chitara, L. Panchakarla, S. Krupanidhi, C. Rao. "Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons". Advanced Materials,23 (2011) 5419-5424.
[66] L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu, C.Y. Wu, L. Wang, J.G. Hu, C. Xie, F.X. Liang. "Monolayer graphene/germanium schottky junction as high-performance self-driven infrared light photodetector". ACS Applied Materials & Interfaces,5 (2013) 9362-9366.
[67] X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.B. Xu. "High-responsivity graphene/silicon-heterostructure waveguide photodetectors". Nature Photonics,7 (2013) 888-891.
[68] H. Ahmad, H. Rashid, M.F. Ismail, K. Thambiratnam. "Fabrication and characterization of tungsten disulphide/silicon heterojunction photodetector for near infrared illumination". Optik,185 (2019) 819-826.
[69] Y. Zhao, L. Li, S. Liu, J. Wang, J. Xu, Y. Shi, K. Chen, P.R. i Cabarrocas, L. Yu. "Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes". Nanotechnology,31 (2020) 145602.
[70] J. Deng, Z. Guo, Y. Zhang, X. Cao, S. Zhang, Y. Sheng, H. Xu, W. Bao, J. Wan. "MoS 2/Silicon-on-insulator heterojunction field-effect-transistor for high-performance photodetection". IEEE Electron Device Letters,40 (2019) 423-426.
[71] V. Dhyani, S. Das. "High-speed scalable silicon-MoS2 P-N heterojunction photodetectors". Scientific reports,7 (2017) 44243.
[72] E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, X. Li. "In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared". ACS photonics,6 (2019) 565-572.
[73] P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu, X. Zhang, X. Zhang, J. Jie. "Solution‐processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra‐broadband photodetection". Advanced Materials,30 (2018) 1801729.
[74] C. Xie, L. Zeng, Z. Zhang, Y.H. Tsang, L. Luo, J.H. Lee. "High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate". Nanoscale,10 (2018) 15285-15293.
[75] Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y.H. Tsang. "High-performance MoS 2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared". Optics letters,42 (2017) 3335-3338.
[76] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu. "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection". Nanotechnology,28 (2017) 275202.
[77] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, S.J. Chua. "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure". Nanotechnology,30 (2019) 075204.
[78] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto, I. Shimoyama. "NIR spectrometer using a schottky photodetector enhanced by grating-based SPR". Optics Express,24 (2016) 25797-25804.
[79] C. Xie, B. Nie, L. Zeng, F.X. Liang, M.Z. Wang, L. Luo, M. Feng, Y. Yu, C.Y. Wu, Y. Wu. "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors". Acs Nano,8 (2014) 4015-4022.
[80] Y. Cao, J. Zhu, J. Xu, J. He, J.L. Sun, Y. Wang, Z. Zhao. "Ultra‐broadband photodetector for the visible to terahertz range by self‐assembling reduced graphene oxide‐silicon nanowire array heterojunctions". Small,10 (2014) 2345-2351.
[81] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee. "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high‐detectivity, self‐driven visible–near infrared photodetectors". Advanced Functional Materials,25 (2015) 2910-2919.
[82] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, W. Xie. "Self-Powered, High-Speed and Visible–Near Infrared Response of MoO3–x/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering". ACS Applied Materials & Interfaces,7 (2015) 25981-25990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔