(3.236.100.86) 您好!臺灣時間:2021/05/06 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許秉洲
研究生(外文):Ping-Chou Hsu
論文名稱:金屬輔助電化學蝕刻法製備規則有序準直排列矽單晶奈米管陣列結構及其特性研究
指導教授:鄭紹良
指導教授(外文):Shao-Liang Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:97
中文關鍵詞:奈米球微影術金屬輔助電化學蝕刻法矽單晶奈米管
外文關鍵詞:Nanosphere lithographyMetal assisted electrochemical etchingSilicon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們報導一種在室溫下透過聚苯乙烯奈米球微影術結合金屬輔助催化蝕刻法與電化學蝕刻法的新穎製程技術,成功在(001)矽單晶基材上以一步驟、安全以及低成本的方式製備出大面積規則準直之矽單晶奈米管陣列結構,不需要額外複雜且昂貴的光照顯影設備以及技術,克服由先前文獻報導製備矽晶奈米管所遭遇到的製程問題。在此新穎製程方法中,我們首先在矽晶基材表面形成尺寸均勻且規則有序之內含奈米尖孔洞之蜂巢狀金薄膜結構作為後續催化與蝕刻位置,透過調控聚苯乙烯奈米球之尺寸與電化學蝕刻時間可以分別控制矽單晶奈米管的外徑以及長度。再經由SEM、TEM影像圖與其相對應之電子選區繞射圖譜鑑定分析可得知所製備出之矽單晶奈米管具有高度準直性且為單晶結構。而所獲得之高長寬比矽單晶奈米管因中空結構能避免孔洞間的空氣薄膜逸出,其疏水性質相較於同樣利用金屬輔助電化學蝕刻法所製備之相同尺寸矽晶奈米線更加優異。在波長範圍400-800 nm的光譜量測結果顯示,因矽單晶奈米管可視為是由奈米線與奈米洞共同組成之複合式奈米材料,相較於矽晶基材與矽單晶奈米線擁有更優異的光吸收能力。實驗結果呈現出令人興奮的前景,所提出之新穎製程技術及結構,相信對各式先進一維奈米中空半導體元件之開發將能提供製程改善之參考。
In this study, we propose and demonstrate a novel and room-temperature approach combing the polystyrene nanosphere lithography, metal-assisted catalyzed etching and electrochemical etching process. This method successfully fabricates large-area and well-order arrays of vertically-aligned silicon nanotubes on (001)Si substrate. In contrast to earlier techniques, the new approach proposed in this study does not require the use of toxic chemicals, expensive facilities and metal hard masks or sacrificial templates. In this approach, a unique, hexagonally-ordered Au honeycomb consisted of nanohole patterning with uniform size and spacing was first produced on the surface of (001)Si substrate. The Au honeycomb used as the catalyst and the nanohole used as initial pits to etch vertically downward into the Si substrate by Au-catalyzed chemical etching and electrochemical etching respectively. The outer diameter and the length of silicon nanotubes are modulated by controlling the size of the polystyrene nanosphere and the etching time. From SEM, TEM and SAED analysis indicated the silicon nanotubes are highly collimated and single crystalline. Comparing with the flat Si substrate and the Si nanowire samples, the H-terminated hydrophobic Si nanotubes with open-ended and uncovered hollow interiors that fabricated in this study can prevent the air from escaping from the structures and exhibit higher water contact angles. The visible light band spectroscopic measurement revealed that the silicon nanotubes considered as a hole-in-wire structure exhibited excellent light absorption characteristics compared to silicon nanowires. The field emission measurement results show that the turn-on field was 7.22 V μm-1, owing to their thick wall. To achieve the excellent electronic field emission devices, there are many aspects that need to be overcome and improved. The obtained results present the exciting prospects that the new approach proposed here can be extended to the design and fabrication of various 1-D hollow semiconductor nanodevices with multi-function.
目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽單晶奈米管結構 2
1-2-1 一維矽單晶奈米線與奈米管之應用 2
1-2-2 一維矽單晶奈米線之製備 3
1-2-3 一維矽單晶奈米管之製備 4
1-3 電化學蝕刻技術 5
1-3-1 一維準直矽單晶微奈米孔洞之製備 5
1-3-2 電化學蝕刻多孔矽形成機制 6
1-3-3 電化學蝕刻法製備規則有序矽單晶微奈米孔洞陣列結構 10
1-3-4 電化學結合金屬催化蝕刻法製備矽單晶微奈米線陣列結構 11
1-4 水滴接觸角之相關理論 12
1-5 場發射電子元件 14
1-5-1 電子場發射相關理論 14
1-5-2一維奈米結構應用於電子場發射之研究 15
1-5-3一維矽單晶奈米結構應用於電子場發射之研究 16
1-6 研究動機及目標 16
第二章 實驗步驟及實驗設備 18
2-1 規則有序且尺寸可調控之矽單晶奈米尖孔洞陣列結構 18
2-1-1 矽晶基材使用前處理 18
2-1-2 自組裝奈米球陣列模板製備 18
2-2 規則有序且準直排列之高長寬比矽單晶奈米孔洞通道陣列結構 19
2-3 規則有序且準直排列之矽單晶奈米線陣列結構 19
2-3-1 蒸鍍純金薄膜 20
2-4 規則有序且準直排列之矽單晶奈米管陣列結構 20
2-5 試片分析 21
2-5-1 掃描式電子顯微鏡 21
2-5-2 穿透式電子顯微鏡 21
2-5-3 影像式水滴接觸角量測儀 22
2-5-4 可見光光譜儀 22
2-5-5 真空電子場發射性質量測系統 23
第三章 結果與討論 24
3-1 單層自組裝奈米球模板陣列製備 24
3-2 奈米球微影術結合濕式化學蝕刻法製備矽單晶奈米孔洞陣列 26
3-3 電化學蝕刻法製備矽單晶奈米孔洞通道陣列 27
3-4 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米線陣列 29
3-5 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米管陣列 30
3-6水滴接觸角量測分析 35
3-6-1 矽單晶奈米線陣列 35
3-6-2 矽單晶奈米管陣列 36
3-7 可見光光譜量測分析 36
3-8 電子場發射性質量測分析 37
第四章 結論及未來展望 39
參考文獻 40
表目錄 48
圖目錄 50
參考文獻
[1] D.M. Newman, M.L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology, 18 (2007) 205.
[2] T. Søndergaard and S.I. Bozhevolnyi, “Metal nano-strip optical resonators,” Optical Society of America, 15 (2007) 4198-4204.
[3] K.-Q. Peng, X. Wang, X. Wu, and S.-T. Lee, “Fabrication and photovoltaic property of ordered macroporous silicon,” Applied Physics Letters, 95 (2009) 143.
[4] M.K. Tanmoy Basu, Mahesh Saini, Jay Ghatak, Biswarup Satpati, and Tapobrata Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Applied Materials & Interfaces, 44 (2017) 38931-38942.
[5] J.Ji, H.Zhang, Y.Qiu, L.Wang, Y.Wang, and L.Hu, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays,” Applied Surface Science, 292 (2014) 86-92.
[6] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh, and P. Ayyub, “Universal, geometry-driven hydrophobic behaviour of bare metal nanowire clusters,” Nanotechnology, 19 (2008) 757.
[7] B. Gattu, R. Epur, P.H. Jampani, R. Kuruba, M.K. Datta, and P.N. Kumta, “Silicon–Carbon core–shell hollow nanotubular configuration high-performance lithium-ion anodes,” The Journal of Physical Chemistry C, 121 (2017) 9662-9671.
[8] D.P. Yu, Y.J. Xing, Q.L. Hang, H.F. Yan, J. Xu, Z.H. Xi, and S.Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E, 9 (2001) 305-309.
[9] Y.F. Tzeng, H.C. Wu, P.S. Sheng, N.H. Tai, H.T. Chiu, C.Y. Lee, and I.N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” ACS Applied Materials & Interfaces, 2 (2010) 331-334.
[10] V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A.K. Shukla, and R. Kumar, “Silicon nanowires prepared by metal induced etching (MIE): good field emitters,” RSC Advances, 4 (2014) 57799-57803.
[11] C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays,” Physica E, 30 (2005) 169-173.
[12] S. Chen, W. Yang, J. Zhu, L. Fu, D. Li, and L. Zhou, “Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its field emission property by ion bombardment post-treatment,” Journal of Materials Science: Materials in Electronics, 29 (2018) 10008-10015.
[13] Monika, R. Kumar, R.P. Chauhan, R. Kumar, and S.KChakarvarti, “Preparation and field emission study of low-dimensional ZnS arrays and tubules,” Journal of Experimental Nanoscience, 10 (2015) 126-134.
[14] J.K. Rath, F.D.Tichelaar, H. Meiling, and R.E.I. Schropp, “Hot-wire CVD poly-silicon films for thin film devices,” Materials Research Society, 507 (1998) 879-890.
[15] K. Bruhne, M.B. Schubert, C. Kohler, and J.H. Werner, “Nanocrystalline silicon from hot-wire deposition a photovoltaic material,” Thin Solid Films, 395 (2001) 163–168.
[16] B. Schroeder, U. Weber, H. Seitz, A. Ledermann, and C. Mukherjee, “Current status of the thermo-catalytic (hot-wire) CVD of thin silicon films for photovoltaic applications,” Thin Solid Films, 395 (2001) 298–304.
[17] H. Meiling, A.M. Brockhoff, J.K. Rath, and R.E.I. Schropp, “Hydrogenated amorphous and polycrystalline silicon TFTs by hot-wire CVD,” Non-Crystalline Solids, 227–230 (1998) 1202–1206.
[18] E. Iwaniczko, Y. Xu, R.E.I. Schropp, and A.H. Mahan, “Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD,” Thin Solid Films, 430 (2003) 212-215.
[19] M. Lu, M.K. Li, L.B. Kong, X.Y. Guo, and H.L. Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” Chemical Physics Letters, 374 (2003) 542-547.
[20] J.Y. Kim, J.H. Ahn, D.I. Moon, T.J. Park, S.Y. Lee, and Y.K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosensors and Bioelectronics, 55 (2014) 162-167.
[21] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, “Supersensitive detection of explosives by silicon nanowire arrays,” Angewandte Chemie, 49 (2010) 6830-6835.
[22] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, and S.T. Lee, “Silicon nanowires as chemical sensors,” Chemical Physics Letters, 369 (2003) 220-224.
[23] J.F. Hsu, B.R. Huang, C.S. Huang, and H.L. Chen, “Silicon nanowires as pH sensor,” Japanese Journal of Applied Physics, 44 (2005) 2626–2629.
[24] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, and Y. Shi, “Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires,” IEEE Electron Device Letters, 39 (2018) 1069-1072.
[25] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, and Y.H. Tsang, “Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction,” Solar Energy Materials and Solar Cells, 182 (2018) 272-280.
[26] L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S.P. Lau, D. Wu, and Y.H. Tsang, “Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm,” NPG Asia Materials, 10 (2018) 352-362.
[27] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Letters, 10 (2010) 1082-1087.
[28] F.Wang, Y.Zhang, M.Yang, L.Yang, Y.Sui, J. Yang, Y. Zhao, and X. Zhang, “Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities,” Advanced Functional Materials, 28 (2018) 1805001.
[29] K. Peng, X. Wang, and S.-T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters, 92 (2008) 163.
[30] Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He, and Y. Hu, “Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer,” American Chemical Society, 112 (2008) 20126–20130.
[31] H.C. Wu, T.Y. Tsai, F.H. Chu, N.H. Tai, H.N. Lin, H.T. Chiu, and C.Y. Lee, “Electron field emission properties of nanomaterials on rough silicon rods,” American Chemical Society, 114 (2010) 130–133.
[32] S. Lee, J. Yoon, B. Koo, D.H. Shin, J.H. Koo, C.J. Lee, Y.-W. Kim, H. Kim, and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Transactions on Nanotechnology, 12 (2013) 704-711.
[33] H.F. Hsu, J.Y. Wang, and Y.H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” Journal of The Electrochemical Society, 161 (2014) 53-56.
[34] Y. Hung, Jr., S.L. Lee, L.C. Beng, H.C. Chang, Y.J. Huang, K.Y. Lee, and Y.S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films, 556 (2014) 146-154.
[35] W.P.R. Liyanage and M. Nath, “CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion,” Journal of Materials Chemistry A, 4 (2016) 14637-14648.
[36] M. Xue, F. Li, D. Chen, Z. Yang, X. Wang, and J. Ji, “High-oriented polypyrrole nanotubes for next-generation gas sensor,” Advanced Materials, 28 (2016) 8265-8270.
[37] S.L. Cheng, C.H. Chung, and H.C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates,” Journal of The Electrochemical Society, 155 (2008) 711-714.
[38] B. Ozdemir, M. Kulakci, R. Turan, and H.E. Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology, 22 (2011) 155.
[39] A.H. Chiou, T.C. Chien, C.K. Su, J.F. Lin, and C.Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Current Applied Physics, 13 (2013) 717-724.
[40] L.U. Vinzons, L. Shu, S. Yip, C.Y. Wong, L.L.H. Chan, and J.C. Ho, “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Research Letters, 12 (2017) 385.
[41] S.L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-controlled fabrication of dimension-tunable Si nanowire arrays on patterned (001)Si substrates,” Thin Solid Films, 520 (2012) 3309-3313.
[42] Z. Feng, K.Q. Lin, Y.C. Chen, and S.L. Cheng, “Fabrication and field-emission properties of vertically-aligned tapered [110]Si nanowire arrays prepared by nanosphere lithography and electroless Ag-catalyzed etching,” Nano, 13 (2018) 185.
[43] S.L. Cheng, H.C. Lin, Y.H. Huang, and S.C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Advances, 7 (2017) 23935-23941.
[44] S.L. Cheng, C.Y. Chen, and S.W. Lee, “Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001)Si substrate,” Thin Solid Films, 518 (2010) S190-S195.
[45] Z. Lu, T. Wong, T.-W. Ng, and C. Wang, “Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries,” RSC Advances, 4 (2014) 2440-2446.
[46] Z. Zhang, L. Liu, T. Shimizu, S. Senz, and U. Gosele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template,” Nanotechnology, 21 (2010) 603.
[47] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, and J. Li, “Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation,” Journal of Materials Chemistry A, 7 (2019) 15113-15122.
[48] X. Xu, Q. Yang, N. Wattanatorn, C. Zhao, N. Chiang, S.J. Jonas, and P.S. Weiss, “Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures,” ACS Nano, 11 (2017) 10384-10391.
[49] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, and X. Zhang, “Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application,” Applied Physics Letters, 102 (2013) 163.
[50] Y.M. Tseng, R.Y. Gu, and S.L. Cheng, “Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties,” Applied Surface Science, 508 (2020) 145.
[51] X. Badel, “Electrochemically etched pore arrays in silicon for X-ray imaging detectors.,” (2005).
[52] D. Kondrashova, A. Lauerer, D. Mehlhorn, H. Jobic, A. Feldhoff, M. Thommes, D. Chakraborty, C. Gommes, J. Zecevic, P. de Jongh, A. Bunde, J. Karger, and R. Valiullin, “Scale-dependent diffusion anisotropy in nanoporous silicon,” Scientific Reports, 7 (2017) 402.
[53] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, and U. Ko¨nig, “Random and ordered macropore formation in p-type silicon.,” Journal of The Electrochemical Society, 149 (2002) 70-76.
[54] V. Lehmann, “The physics of macropore formation in low doped n-type silicon,” Journal of The Electrochemical Society, 140 (1993) 2836.
[55] A.B. Dheyab, L.A. Wali, A.M. Alwan, and I.A. Naseef, “Perfect incorporation of AuNPs on the p-n(+) porous silicon for highly-efficient solar cells,” Optik, 198 (2019) 163317.
[56] M.S. Choi, H.G. Na, A. Mirzaei, J.H. Bang, W. Oum, S. Han, S.-W. Choi, M. Kim, C. Jin, S.S. Kim, and H.W. Kim, “Room-temperature NO2 sensor based on electrochemically etched porous silicon,” Journal of Alloys and Compounds, 811 (2019) 151975.
[57] M. Škrabi´, M. Kosovi´c, M. Goti´, L. Mikac, M. Ivanda, and O. Gamulin, “Near-Infrared surface-enhanced Raman scattering on silver-coated porous silicon photonic crystals,” Nanomaterials, 9 (2019) 421.
[58] H.A. Hadi, R.A. Ismail, and N.J. Almashhadani, “Preparation and characteristics study of polystyrene porous silicon photodetector prepared by electrochemical etching,” Journal of Inorganic and Organometallic Polymers and Materials, 29 (2019) 1100–1110.
[59] V. Lehmann, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon,” Journal of The Electrochemical Society, 137 (1990) 653.
[60] M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, and A. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon,” Journal of Crystal Growth, 73 (1985) 622—636.
[61] M.I.J. Beale, N.G. Chew, M.J. Uren, A.G. Cullis, and J.D. Benjamin, “Microstructure and formation mechanism of porous silicon,” Applied Physics Letters, 46 (1985) 86-88.
[62] X.G. Zhang, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution,” Journal of The Electrochemical Society, 136 (1989) 1561.
[63] R.L. Smith and S.D. Collins, “Porous silicon formation mechanisms,” Journal of Applied Physics, 71 (1992) R1-R22.
[64] X.G. Zhang, “Mechanism of pore formation on n-type silicon,” Journal of The Electrochemical Society, 138 (1991) 3750.
[65] R.L. Smith, S.-F. Chuang, and S.D. Collins, “A theoretical model of the formation morphologies of porous silicon,” Journal of Electronic Materials, 17 (1988) 534-541.
[66] H. Okayama, K. Fukami, R. Plugaru, T. Sakka, and Y.H. Ogata, “Ordering and disordering of macropores formed in prepatterned p-type silicon,” Journal of The Electrochemical Society, 157 (2010) 54-59.
[67] C.M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films, 516 (2007) 433-437.
[68] H. Asoh, K. Uchibori, and S. Ono, “Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres,” Semiconductor Science and Technology, 26 (2011) 102001.
[69] S.L. Cheng, Y.H. Lin, S.W. Lee, T. Lee, H. Chen, J.C. Hu, and L.T. Chen, “Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching,” Applied Surface Science, 263 (2012) 430-435.
[70] S.H. Baek, B.Y. Noh, I.K. Park, and J.H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Research Letters, 7 (2012) 29.
[71] N. Guo, JinquanWei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, KunlinWang, S. Song, Y. Xu, and DehaiWu, “Fabrication of silicon microwire arrays for photovoltaic applications,” Applied Physics A, 102 (2011) 109–114.
[72] D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, and X. Zheng, “Hybrid Si microwire and planar solar cells: passivation and characterization,” Nano Letters, 11 (2011) 2704-2708.
[73] K. Seo, Y.J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, and K.B. Crozier, “Si microwire solar cells improved efficiency with a conformal SiO2 layer,” American Chemical Society, 7 (2013) 5539–5545.
[74] H.D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y.J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Scientific Reports, 5 (2016) 11277.
[75] J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, “Holey silicon as an efficient thermoelectric material,” Nano Letters, 10 (2010) 4279-4283.
[76] C.W. Roske, E.J. Popczun, B. Seger, C.G. Read, T. Pedersen, O. Hansen, P.C. Vesborg, B.S. Brunschwig, R.E. Schaak, I. Chorkendorff, H.B. Gray, and N.S. Lewis, “Comparison of the performance of CoP-Coated and Pt-Coated radial Junction n(+)p-Silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g),” The Journal of Physical Chemistry Letters, 6 (2015) 1679-1683.
[77] J. Tang, B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu, and G. Zheng, “Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays,” Nano Letters, 13 (2013) 5350-5354.
[78] S.C. Hsu, C.L. Hsin, C.W. Huang, S.Y. Yu, C.W. Wang, C.M. Lu, K.C. Lu, and W.W. Wu, “Single-crystalline Ge nanowires and Cu3Ge/Ge nano-heterostructures,” CrystEngCom, 14 (2012) 4570.
[79] H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Applied Physics Letters, 96 (2010) 213503.
[80] K.T. Park, Z. Guo, H.D. Um, J.Y. Jung, J.M. Yang, S.K. Lim, Y.S. Kim, and J.H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” The Optical Society, 19 (2010) 135-263.
[81] L. Li and C.P. Wong, “Formation of high-aspect-ratio through silicon vias (TSVs) with a broad range of diameter by uniform metal-assisted chemical etching,” IEEE Xplore, 7 (2016) 1746-1751.
[82] P. Lianto, S. Yu, J. Wu, C.V. Thompson, and W.K. Choi, “Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon,” Nanoscale, 4 (2012) 7532-7539.
[83] Y. Wang, V. Schmidt, S. Senz, and U. Gosele, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nanotechnology, 1 (2006) 186-189.
[84] W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C.V. Thompson, and M.H. Hong, “Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching,” Nano Letters, 8 (2008) 3799-3802.
[85] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials, 23 (2011) 285-308.
[86] J. de Boor, N. Geyer, J.V. Wittemann, U. Gosele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology, 21 (2010) 095302.
[87] K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, 1 (2005) 1062-1067.
[88] K. Peng, J. Jie, W. Zhang, and S.-T. Lee, “Silicon nanowires for rechargeable lithium-ion battery anodes,” Applied Physics Letters, 93 (2008) 033105.
[89] B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Advanced Functional Materials, 18 (2008) 2348-2355.
[90] J. Kim, H. Rhu, and W. Lee, “A continuous process for Si nanowires with prescribed lengths,” Journal of Materials Chemistry, 21 (2011) 15889.
[91] X. Jiao, Y. Chao, L. Wu, and A. Yao, “Metal-assisted chemical etching of silicon 3D nanostructure using direct-alternating electric field,” Journal of Materials Science: Materials in Electronics, 27 (2015) 1881-1887.
[92] C.T. Dao, C.T. Anh, and L. Ngan, “Vertical-aligned silicon nanowire arrays with strong photoluminescence fabricated by metal-assisted electrochemical etching,” Journal of Nanoelectronics and Optoelectronics, 15 (2020) 127-135.
[93] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, and X. Zheng, “On-demand production of hydrogen by reacting porous silicon nanowires with water,” Nano Research, 13 (2020) 1459–1464.
[94] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, “Wettability switching techniques on superhydrophobic surfaces,” Nanoscale Research Letters, 2 (2007) 577-596.
[95] M. Callies and D. Quéré, “On water repellency,” Soft Matter, 1 (2005) 55.
[96] K. MA, T.S. CHUNG, and R.J. GOOD, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” Journal of Polymer Science, 36 (1998) 2327–2337.
[97] R.H. Fowle, F.R.S., and D.L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London, 119 (1928) 173-181.
[98] C.H. Kuo, J.M. Wu, and S.J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires electrical transport and field emission characteristics,” Nanoscale Research Letters, 8 (2013) 69.
[99] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, and S. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Advanced Electronic Materials, 3 (2017) 1700295.
[100] J.J. Niu, J.N. Wang, and N.S. Xu, “Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor–solid reaction,” Solid State Sciences, 10 (2008) 618-621.
[101] J. Wu, L. Chen, S. Li, C. Du, Q. Zhang, C. Zheng, J. Xu, and K. Song, “Improved field emission performances for graphene/ZnO nanowires/graphene sandwich composites,” Materials Letters, 213 (2018) 391-393.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔